Библиотека

Теология

Конфессии

Иностранные языки

Другие проекты







Ваш комментарий о книге

Елизаров Е. Основы организации мышления, или сколько будет 2 +2?

ОГЛАВЛЕНИЕ

ГЛАВА 2. ПРОТИВОРЕЧИЯ КОЛИЧЕСТВЕННОГО АНАЛИЗА, ИЛИ ЧТО ТАКОЕ «СКОЛЬКО БУДЕТ»?

7. Таинство брака в контексте логических обобщений

Итак, мы обнаруживаем, что с каждым переходом на новый уровень обобщений появляются ранее неизвестные стороны действительности, и каждый раз мы оказываемся вынужденными искать новую шкалу измерений. Все это окружает нас буквально на каждом шагу, и на каждом шагу мы формулируем и разрешаем сложные «уравнения». Пример с детской задачкой наглядно подтверждает сказанное. Правда, постоянно сталкиваясь с необычным в нашей практике, с фактами, которые требуют глубокого осмысления, мы (вот еще один парадокс) очень часто в упор не видим очевидное и, не задевая сознанием, проходим сквозь общеизвестное.
Вот, например.
Водород представляет собой горючий газ. Кислород, сам по себе не горюч и не взрывоопасен, однако, являясь сильным окислителем, увеличивает способность материалов к горению; многие несгораемые при нормальном воздухе материалы могут гореть в чистом кислороде или в воздухе, богатом кислородом. Отсюда можно было бы ожидать, что их соединение будет создавать какую-то страшно взрывную и опасную смесь. Однако в реальности два атома водорода и один атом кислорода порождают прямо противоположное ожидаемому, а именно — химическое соединение, подавляющее огонь. Другой пример был известен еще нашим далеким предкам. Медь — это очень мягкий металл. Еще более мягкий металл — олово. Но их сплав рождает бронзу, твердость которой через тысячелетия была превзойдена только железом. Мы знаем, что открытие этого парадоксального факта в свое время совершило грандиозную технологическую революцию: еще из школьного курса истории известно о существовании так называемого бронзового века.
Иллюстрации такого рода можно было бы множить и множить. Но почему же тогда выученный в далеком детстве ответ с такой силой давит на наше сознание, что мы способны не замечать даже кричащие факты явного противоречия ему? Почему математические истины представляются нам чем-то незыблемым и универсальным? Почему наше сознание упорно настаивает на том, что результат любого сложения должен соответствовать ему, абсолютно независимо от того, что именно подвергается суммированию? Лошади ли, коровы, египетские ли пирамиды, страховые конторы, солдаты или милиционеры — почему каждый раз мы упорно ищем доказательство того, что итоговая сумма должна быть равна именно и только «четырем», независимо от природы слагаемых вещей? Почему мы всякий раз, несмотря ни на что, видим какой-то скрытый подвох, какой-то изощренный софизм, если не сказать заковыристый кульбит мысли, имеющий целью заставить ее потерять правильную ориентацию, когда нам доказывают что-то противоречащее затверженной истине? Почему в любой количественной аномалии мы склонны видеть только простую ошибку математического расчета и ничего более?
Да все потому, что культура и дисциплина мысли требуются, может быть, даже не столько для разрешения сложных интеллектуальных задач (в конце концов, природного потенциала, которым располагает каждый нормальный человек, достаточно, для того чтобы напрячься и совершить какой-то разовый умственный «подвиг») сколько для того, чтобы обнаружить проблему, заметить противоречие.
Попутно заметим: сложение — это всего лишь базовая операция; все остальное в математике основывается именно на ней. Так нужно ли удивляться, что более сложные действия, например деление, обнаруживают куда более удивительные отклонения от привычного? Тем не менее здравый смысл и трезвый рассудок даже в древние времена предписывали со всей терпимостью относиться к количественным аномалиям, которые способны проявиться здесь и не пенять на то, что практические результаты могут противоречить абстрактным ожиданиям абсолютных равенств. Так, например, законами XII таблиц, составленными в 450-451 гг. до н. э. коллегией так называемых децемвиров через триста лет после основания Вечного города, предписывалось: «Тем временем, [т.е. пока должник находился в заточении], он имел право помириться [с истцом], но если [стороны не мирились, то [такие должники] оставались в заточении 60 дней. В течение этого срока их три раза подряд в базарные дни приводили к претору на комициум и [при этом] объявлялась присужденная с них сумма денег. <…> В третий базарный день пусть разрубят должника на части. Если отсекут больше или меньше, то пусть это не будет вменено им [в вину]».
Но оставим иронию и продолжим анализ.
До сих пор мы рассматривали «сложение» тел, свойства которых существенно отличаются друг от друга. Однако, помимо них, существуют и вполне однородные, относящиеся к одному и тому же кругу. Над ними так же могут совершаться все те же операции (в конце концов все мы в первом классе учились считать, оперируя выточенными по одному стандарту палочками). Поэтому качественно несопоставимыми вещами наш анализ не может ограничиться.
Можно ли пренебречь внутривидовыми отличиями там, где сложению подвергаются близкородственные вещи? Нет,— здесь тоже требуется выявление единых оснований. Но что значит найти объединяющий круг для количественного сравнения качественно однородных вещей? Прежде всего — обобщение, и сказав это, мы вновь оказываемся в царстве логики. Правда, если в случае с разнородными предметами мы сразу погружались в контекст категориальной, то здесь перед нами встает самая что ни на есть «обыкновенная», классическая формальная логика, берущая начало от Аристотеля.
Вообще говоря, мы должны были начинать именно с обобщения. Ведь и «лошадь» и «корова» — представляют собой именно его результаты. Более общие понятия, «домашний скот», «дерево» — это следующая ступень, и таких последовательно сменяющих друг друга ступеней может быть много. Но предел все-таки существует, и в нем, как мы видели, растворяются все частные определения, все качественные отличия. Тренированное сознание в состоянии перепрыгивать через многие ступени, но только потому, что промежуточные обобщения выполняются автоматически, на подсознательном, уровне, в каком-то свернутом «интериоризированном» виде. Поэтому действительное начало сложения лежит в объединении не разнородных, но внутривидовых отличий. Все дальнейшие ступени восхождения к родам, семействам, классам и так далее к самой вершине пирамиды — это цепь тех же процедур выявления нового качества, которое может служить основанием синтеза. Просто обращение к более высокому уровню позволило нам быстрее погрузиться в самую суть проблемы, оказаться в самом центре основных противоречий.
Обобщение представляет собой одну из ключевых процедур, и правилам ее выполнения обязано подчиняться любое серьезное исследование. Правила же предполагают, что в ходе строгого и точного выполнения необходимых процедур от анализируемых явлений последовательно отбрасываются все те отличительные особенности, которые присущи им и только им. Если операция выполняется строго, то в результате должны остаться только те свойства, которые одновременно присущи всем явлениям анализируемого круга. Именно совокупность этих свойств и образует собой содержание какого-то нового, более широкого (но и более абстрактного) понятия.
В схематичном виде обобщение можно представить следующим образом. Вообразим, что у нас есть три условных объекта (x, y, z), каждый из которых обладает какими-то своими характеристиками:
х = a+b+c,
y = a+c+d,
z = b+c+e.
Видно, что свойства «a» и «b» присущи только двум объектам из трех, свойства «d» и «e» — только одному. Лишь качество «с» присуще сразу всем трем. Таким образом, мы вправе отбросить характеристики «a», «b», «d», «е» и выделить свойство «с» как объединяющее основание. Именно по основанию «с» и оказывается возможным проводить количественное сравнение наших объектов. Впрочем, это не единственное представление. Допустимо и такое, когда из первичного уравнения: х=a+b+c [х — студент (а) первого курса (b) физико-математического факультета (c)] отбрасываются частные составляющие целостного определения (b+c) и остается общее: х=а (x — студент). Объединяет их то, что отбрасываются какие-то несущественные, дополнительные свойства. Правда, что именно относится к несущественным, подлежит выяснению.
Очерченная таким образом интеллектуальная операция имеет большое значение в систематизации нашего мышления. Строго говоря, наука начинается именно с обобщений; индивидуальные характеристики вещей, процессов, явлений, то есть частные свойства, которые присущи лишь единичным объектам, вообще не являются ее предметом. Задача науки состоит в том, чтобы выявлять единые законы, принципы, правила, которым обязано подчиняться всё. А это прежде всего — абстрагирование от единичного.
На первый взгляд, перед нами очень несложная и интуитивно понятная процедура. Но в действительности простота и самоочевидность не более чем иллюзия обыденного сознания. В сущности, точно такая же, как и видимость того, что несоответствие когда-то выученному результату сложения — всегда ошибка. Реальная действительность и в этом случае (как, впрочем, всегда) оказывается не только значительно сложнее, но и много интересней.
Во-первых, последовательно отбрасывая все, что составляет отличительные особенности единичных вещей, мы значительно обедняем то, что входит в общий круг познания. Иными словами, нами познается не «живая» действительность, но сильно упрощенная, а значит, до некоторой степени деформированная ее модель. Больше того, там, где отбрасываются все индивидуальные свойства и в расчет принимаются только те характеристики, которые одновременно свойственны целому классу вещей, сами вещи попросту исчезают. Или необратимо разрушаются: ведь при острой необходимости даже микроскоп может быть использован в качестве молотка. Остаются лишь некоторые абстрагированные от всего осязательного условности. Иначе говоря, не множество живых организмов, каждый из которых отличен от всех других, но какие-то «одноклеточные», не собрание ярких индивидуальностей, обладающих своим характером, темпераментом, интеллектом, опытом и так далее, но категории солдат, врачей, милиционеров, не пестрота разноликой живности, обитающей рядом с человеком, но род «домашнего скота», не тонкие инструменты познания, но простые массы, облеченные в подходящую форму…
Правда, благодаря абстрагированию от индивидуальных особенностей и выявлению общих черт, присущих сразу всем явлениям какого-то одного вида, появляется возможность обращаться с ними как с однородными. А следовательно, появляется возможность проводить с ними все операции количественного сравнения. Правда, при этом нужно постоянно помнить, что операции проводятся уже не с самими вещами, но с некоторыми замещающими их сущностями, которые вбирают в себя лишь ограниченную часть характеристик, изначально свойственных им. Так в приведенном примере мы подвергаем количественному сравнению не исходные объекты x, y, z, но не имеющие с ними почти ничего общего абстрактные образования, наделенные свойством «с».
В действительности все понятия, которыми мы пользуемся, содержат в себе куда более пространный перечень свойств, и многие из них, как уже говорилось, могут растворить в себе всю культуру социума. Поэтому там, где мы сталкиваемся с качественно несопоставимыми реалиями, подобное обобщение не заканчивается на первом или втором шаге, но может продолжаться до тех пор, пока не останутся расплывчатые образы масс, длин, временных интервалов. В предельной точке такого последовательного абстрагирования точность вычислений достигает абсолюта. Но в самом ли деле путем отсечения всех индивидуальных отличий можно достигнуть безупречной строгости и непогрешимости результата? Ведь если в итоге мы судим не о вещах, но только об их упрощенных моделях, то какое отношение достигаемая точность имеет к реальности? А то и вообще к здравому смыслу.
Между тем грамотно выстроенное обобщение — в особенности там, где речь идет о близкородственных предметах,— призвано решать не одни только абстрактные, но и весьма практические задачи; и эти задачи часто оказываются сопряженными не только с обыденной логикой (здравым смыслом), но и с этикой, моралью. (Выражая лаконическим языком отличие первых от вторых, можно сказать, что мораль — это этика группы, этика — мораль рода.) Даже с вероисповедальными проблемами. Неспособность решить их часто оборачивается кровопролитием.
Так, например, во все времена, не исключая и наше, значимым был и остается вопрос: допустимо ли сочетать браком людей, относящихся к разным социальным слоям, культурам, вообще к разным мирам? Как быть, когда один человек — человек, другой — просто «говорящее орудие»? (Марк Варрон, 116 — 27 до н. э., римский писатель, в своем сочинении «О сельском хозяйстве» разделил средства труда на три части: говорящие, издающие нечленораздельные звуки и немые; к первым он относил рабов, ко вторым волов и к третьим телеги.) История помнит, что римским плебеям законами тех же XII Таблиц запрещались брачные союзы с патрицианскими родами, и потребовались столетия сецессий и восстаний, борьбы за осознание бесчеловечным этого запрета и его устранение. Как быть, когда перед нами вообще неизвестно что, как, например, те краснокожие, с которыми столкнулись испанские конкистадоры? Властями новых колоний в свое время был направлен в Рим специальный запрос о том, можно ли считать людьми американских индейцев. Решение совсем не простого по тем временам вопроса потребовало значительного времени, и только буллой Павла II «Sublimus deus» в 1537 году был, наконец, дан ответ: индейцы (и все другие народы, которые могут быть открыты христианами в будущем) такие же люди, как и все. Впрочем, и после этого, даже великими гуманистами того времени (Лас-Касас, 1474 — 1566, испанский, историк и публицист, обличитель жестокости конкисты) допускалась возможность обращения в рабство чернокожих. Брак же европейца  с  уроженцами иных континентов (и в особенности замужество) часто ставил человека вне общества… Да и сегодня со всей остротой встает вопрос: как воспитывать детей смешанных браков и как «делить» их в случае развода?
Во-вторых, очерченное выше в чистом виде представляет собой не что иное, как карикатуру на логическую операцию. В старое, советское, время существовало два вида университетов: университет марксизма-ленинизма и «просто» университет. Но учащийся любого из них понимал, что просто так взять и отсечь от первого видовые характеристики («марксизм-ленинизм») и приравнять друг к другу оставшееся («университет») нельзя. Рассказывали и другое: ворона и соловей учились в одной консерватории, но один на дневном отделении, другая — на заочном, Думается, и у выпускницы заочного результат такой операции способен вызвать замешательство. Если бы и в самом деле все обстояло так просто (и так дико), наукой без особого труда могла бы заниматься не только ворона (к слову, об ее интеллекте рассказывают самые удивительные вещи) но и любой олигофрен. Вот только что получилось бы из науки, руководствующейся подобной «логикой» — вопрос… Впрочем, реально истекшая история познания хранит память о многом, что сегодня способно служить самым настоящим анекдотом.
Кстати, первичное значение слова «анекдот» (от франц. anecdote, от греч. anéкdotos — неизданный), в отличие от приведенного нами в первой главе, не несет в себе в общем-то ничего смешного; это просто короткий рассказ о незначительном, но характерном происшествии из жизни исторического лица. Так, «… дней минувших анекдоты от Ромула до наших дней хранил он в памяти своей»,— сказал Пушкин о своем герое, и в переводе на бытовую прозу это означало способность, не будучи профессионалом, свободно ориентироваться в истории. Другими словами, быть достаточно образованным гуманитарием. Вот одно из таких происшествий, сохраненных в людской памяти: Платон определил человека как «двуногое без перьев»; его знаменитый оппонент (тот самый Диоген, что жил в бочке и с фонарем при свете дня искал Человека) в насмешку над Платоном (которого он считал болтуном) ощипал петуха; Платон был вынужден добавить к своему определению дополнительный признак — «…с плоскими ногтями».
Понятно, что «двуногих без перьев, но с плоскими ногтями» можно сочетать браком (а при желании — и подавать нас стол), не оглядываясь ни на какие этнокультурные, религиозные, этические запреты; и уже только поэтому анекдот может служить примером откровенной карикатуры на логическую операцию.
Наконец, в-третьих, выполнение грамотных обобщений, способных служить развитию теоретической мысли требует огромного труда, в ходе которого проводится ревизия всего культурного наследия. Вот проверочный тест: попробуем дать исчерпывающее (то есть не упускающее из себя решительно ничего, что должно было бы подпадать под него) и точное (то есть не включающее ничего лишнего) определение всё тем же общим понятиям, которые уже фигурировали здесь: «лошадь», «корова», «страховая контора» и так далее. Думается, любой способен обнаружить, что такая задача потребует не только огромного напряжения логических способностей, но и мобилизации едва ли не всех наших знаний об окружающем мире. Но несмотря ни на какие усилия мысли тот или иной изъян все равно будет обнаруживаться. Тем больший изъян будет обнаруживаться там, где фигурируют более сложные понятия: любовь, жизнь, Бог. Все это потому, что объем впитанной отдельным индивидом культуры никогда не равен объему культуры в целом. (Правда и здесь встречаются исключения, и чем строже дисциплина мысли — тем чаще, но пока удовольствуется сказанным.)
Словом, такая задача не по силам никому одному: история мысли показывает, что чаще всего общие понятия формируются целыми поколениями и формируются совсем не тем путем, какой был очерчен выше. Дело в том, что любое обобщение — это не только исключение каких-то индивидуальных характеристик, но — прежде всего! — выявление дополнительных, до поры вообще неизвестно откуда возникающих, свойств. Может быть, даже и жестче: не столько отсечение индивидуального, сколько определение ключевых качеств, присущих тому уровню явлений, на который выводит обобщение. Что, собственно, мы и видели.
Так, уже приводившийся нами вывод Маркса о существе стоимости, как бы сегодня мы ни относились к его учению, демонстрирует именно это. С одной стороны, его обобщение стало одним из величайших открытий, когда-либо сделанных человеком, но открытие не свершилось вдруг, на пустом месте, его подготавливали и великие экономисты, и великие философы. С другой, воплощенный в товаре живой труд (то единое основание, по которому и проводится сравнение всех товарных ценностей) демонстрирует субстанцию, принципиально отличную от вещественной природы любого отдельно взятого продукта.
В общем, даже там, где речь идет о близкородственных вещах, все операции количественного сравнения проводятся не с ними самими, но с какими-то заместительными сущностями, которые, с одной стороны, вбирают в себя лишь ограниченную часть характеристик, свойственных им как физическим или культурологическим реалиям, с другой — обретают какие-то дополнительные свойства. При этом важно понять, что дополнительные качества, которые вдруг обнаруживаются здесь, порождаются отнюдь не собственной природой исходных начал, они являются атрибутами совершенно иного, зачастую значительно более широкого, круга явлений. Все это мы уже видели и в детстве, когда от абстрактных функциональных машин, приспособленных к условной ли штыковой атаке, борьбе ли с хулиганами или к лечению чужих ран, мы переходили к конкретным лицам, воспринимавшихся нами тогда в качестве вполне живых персонажей, и во студенчестве, когда от многообразия товаров переходили к стоимости, и от реальных сущностей — к метрам, секундам, килограммам.
Словом, логическое обобщение — это, может быть, один из самых простых примеров поиска оснований исследуемой здесь операции, но уже сказанное здесь дает понять, что полное осознание даже простейших ее форм требует едва ли не предельного напряжения мысли.

§ 8. Природа числа: все или ничто?

Действительно. Как только мы начинаем анализировать процедуру сложения, обнаруживается, что результат — это вовсе не врожденная истина, но продукт какого-то очень сложного интеллектуального построения. По существу уже здесь мы сталкиваемся с примером восхождения к самым высоким уровням абстракций. Ведь любые формы классификации явлений окружающего мира, которые тяготеют к условному основанию пирамиды видов, родов классов, рано или поздно обнаруживают нарушающий строгость построений логический изъян, и этот изъян заставляет нас восходить на следующую ступень абстракций. Мы уже видели: для того, чтобы сложить лошадей и коров, нужно было взойти на уровень каких-то родовых понятий; для того, чтобы сложить домашний скот с пароходами, страховыми конторами или египетскими пирамидами,— на еще более высокую ступень, обобщающую памятники материальной культуры всей нашей цивилизации; чтобы прибавить к ним еще и фортепианные концерты Моцарта, — на следующую вершину, которая объединяет в себе продукты человеческого творчества вообще… И так далее до самого предела.
«Точные» науки отвлекаются от всего видового. Так, теоретическая физика абстрагируется от всего, что характеризует реальные единичные вещи, даже целые их роды и классы. Математика воспаряет и над ее предметом, и здесь, на самой вершине, проявляется единство математического уравнения с предельным логическим обобщением. Но неизбежен вопрос: где вершина? Что скрывает тот высший уровень обобщений, который уже не может содержать в себе никаких логических изъянов, где решительно ничто не способно поставить под сомнение всеобщность и абсолютность результата сложения?
Думается, ответ способен найти каждый, кто уже прошел начальную школу организации мышления. И этот ответ гласит, что самоочевидная математическая истина оперирует не предметами, не физическими процессами, не реальными явлениями материального мира. Образно говоря, здесь фигурируют лишь некоторые условные, лишенные всякой определенности, абсолютно безликие «ниши» нашего собственного сознания. И не более того. В этом смысле сознание может быть уподоблено какой-то огромной камере хранения, которая создается на вокзалах: ее одинаковые железные ячейки могут скрывать в себе все, что угодно: от нехитрого багажа командированного инженера до контрабандного наркотика. Каждая из этих «ниш-ячеек» — именно в силу своей пустоты — строго подобна и равна любой другой, и вместе с тем каждая из них способна вместить в себя все, что угодно: корову, страховую контору, фортепианный концерт, дядю Степу, бравого солдата Швейка и так далее. Правда, вместить все это в себя она может только «задним числом», только после выполнения операций количественного сравнения. Поэтому на самом деле, обращаясь к математическому расчету, мы складываем отнюдь не физические реалии окружающего мира, но всякий раз именно эти ничем не заполненные равновеликие «объемы» нашего сознания, и только получив какой-то результат, наполняем их подручным содержанием. А уже затем начинаем обманывать сами себя, самих себя, уверяя в том, что складывали именно конкретные вещи, которые обладают вполне доступными измерению характеристиками.
Можно привести и другой образ — образ неких чистых ярлыков, на которых можно написать все, что мы захотим: «египетская пирамида», «паровой утюг», «бубновый валет» и так далее. Но что бы мы ни начертали на любом из них после выполнения каких-то количественных операций, каждый останется абсолютным подобием всем остальным, ничто не изменит его качественной определенности. Вернее сказать, его абсолютной неопределенности, безликости. Эта не заполненная ничем плоскость, точно так же, как и пустая «ниша» нашего сознания, существует исключительно в нем, является его и только его фантомом. Если угодно, — чистой фикцией. Словом, в мире объективной, то есть независящей от него, и существующей вне его реальности ничего этого нет. Однако если все математические операции выполняются именно с фиктивными сущностями, то, получается, что во всем Космосе не найдется ни одного реального физического аналога того, что в действительности подвергается «чистому» математическому сложению.
Ясно, что все сказанное нами не может не порождать крамольный для обыденного сознания вопрос. Если и в самом деле математика оперирует вещами, которые вообще не существуют в природе, то и все ее законы — это не законы природы, но предписанные ей принципы организации нашего собственного мышления?
Да это так: при всем том, что строгое математическое построение продолжает оставаться одним из основных средств познавательной деятельности, соотношение математических истин, законов функционирования нашего собственного сознания и самой действительности — это сложнейший вопрос, который не разрешен и по сию пору.
Первым, кто задался этим оказавшихся неожиданным для всех вопросом, был все тот же Кант. До него неоспоримо господствовало мнение, согласно которому математические законы и принципы лежат в основе устройства всей Вселенной. Больше того, предполагалось, что сам Господь Бог руководствовался математикой при создании нашего мира и что изучая ее мы проникаем в замысел Творца. Кант впервые ставит вопрос: как возможна чистая математика? То есть математика, истины которой справедливы сами по себе и абсолютно не зависят от нашего опыта, но вместе с тем, применимы ко всем его результатам. Словом, используя только что приведенные нами образы, все количественные соотношения между пустыми «нишами» сознания или чистыми «ярлыками» вещей нисколько не зависят от того, что именно может быть положено в них, или начертано на пустых бланках.
Ответ немецкий философ находит в том, что в основе математики лежат не объективные истины, не основополагающие законы природы, но жесткие схемы, в соответствии с которыми только и может функционировать собственный рассудок человека.
Строго говоря, этот вывод нисколько не противоречил тому убеждению, согласно которому математические принципы являлись одними из принципов организации породившего этот мир Божественного разума. Ведь человек — это образ и подобие Бога, и если предположить, что над-материальное существо могло оставить свое подобие только в такой же над-материальной сфере, человеческий разум оказывался прямым отпечатком Божественного. А значит, и сам обладал возможностью предписывать какие-то законы воспринимаемому миру. Тем более это вывод не противоречит тому, что сам дух может оказаться ничем иным, как особой формой вещественности.
По Канту, мы уже вскользь говорили об этом, в основе всех математических выводов лежат врожденные представления человека о таких предельно общих и отвлеченных началах, как пространство и время. Лишь созерцая градуированное нашим сознанием «пустое» пространство и по-разному комбинируя в собственной же голове равные его доли, мы можем составить представление о геометрии окружающего мира. Точно так же, только операции с равными интервалами скрыто созерцаемого нашим же внутренним чувством столь же «пустого» времени дают представление обо всех числах. Поэтому все представления о количественной структуре реальной действительности опираются именно на эти внутренние созерцания однородных порций не заполненной ничем «пустоты». Не случайно Кант называет весь посвященный математике раздел своего исследования «трансцендентальной эстетикой».
Напомним, что над этим внутренним созерцанием встают априорные схемы рассудка, т.е. те логические категории (качества, количества, отношения, модальности), о которых говорилось в первой главе. Поэтому сам процесс восприятия, дешифрации, и последующей обработки сигналов, которые посылает нам окружающая среда, может соответствовать только схемам, которые порождены логикой именно этой «эстетики» и «чистых понятий рассудка». Все то, что выходит за пределы жесткого заранее сформированного ими контура, обязано проходить мимо нашего сознания, не задевая его, как не задевают мысли не знающего грамоты человека многие из тех откровений, которые изложены в книгах. Человек способен организовывать и осознавать свой собственный опыт лишь в строгом соответствии с ними. Поток чувственных восприятий вынужден подстраиваться под них. Они не просто неотъемлемая часть нашего общего умственного багажа, — это те единственно возможные рациональные схемы, в соответствии с которыми только и может обрабатываться и систематизироваться непрерывный поток сигналов, исходящих от внешней действительности.
Так атмосферный кислород попадает в кровь, а оттуда — в клетки организма благодаря особым образом организованной дыхательной системе, которая состоит из легких и дыхательных путей, включающих ноcoвые ходы, гортань, трахею, бронхи, мелкие бронхи и альвеолы. В последних и происходит газообмен: кислород проникает в кровь, а углекислый газ из крови – в легочные пузырьки. Аналогично газообмену, система информационного обмена со средой предусматривает по-своему организованные каналы внутреннего созерцания, свою «анатомию» органов до-логической обработки поступающих извне сигналов. Поэтому вся изложенная в умных книгах математика представляет собой лишь выявление и анализ результатов, которые, говоря языком Канта, a priori определяются подобной «анатомией». Как соматические клетки имеют дело не с самим воздухом, но с результатом сложной предварительной переработки газовой смеси, так и сознание работает с полуфабрикатом информации, на которую уже наложила свою печать виртуальная система ее предварительной переработки. Именно отсюда и оказывается справедливым обратный, уже знакомый нам, вывод, согласно которому строгая гармония и порядок, царствующие в природе, не свойственны ей самой, но проецируются на внешний мир нашим сознанием.
Кантовский взгляд на математику менял многое. Ведь до него господствовало принадлежавшее Лейбницу представление, согласно которому она являет собой сферу аналитических истин, т.е. положений, не добавляющих решительно ничего к тому, что уже содержится в ее основаниях. Таким образом, вся математика — это просто гигантская тавтология, наука, которая не дает никакого нового знания сверх того, что уже скрывалось в ее аксиомах.
Кант же обнаружил, что в ней есть достаточно простора для таких суждений, о которых и говорится в этой главе. Другими словами, для таких операций, в результате которых сумма способна обнаруживать свойства, ранее не содержавшиеся ни в одном из слагаемых. Он называет эти суждения синтетическими, и, справедливо, утверждает, что именно синтетические истины — главная цель познания. В самом деле, нам интересно то, как разлетающиеся после первичного взрыва частицы образуют атомы, атомы — молекулы, молекулы — живой организм, наконец, как живой организм порождает знание обо всех этих метаморфозах. Словом, как все новое в наблюдаемом нами мире складывалось из того, что ни на одной ступени своего развития не содержало в себе ни грана будущей новизны, так и все новое знание складывается именно из синтетических суждений.
Образно говоря, взгляд Лейбница на природу математики уподоблял ее огромному микроскопу, который способен обнаружить неразличимые глазом детали. Да, с его помощью мы узнаем что-то новое о предмете, но это новое уже изначально содержалось в нем, как уже изначально каждая монада таила в себе все определения универсума. Поэтому в своем знании мы лишь воспроизводим существовавшее от века. Его великий соотечественник, напротив, разглядел в ней инструмент скульптора, назначение которого состоит в том, чтобы создавать вещи, недоступные самой природе. Правда, и скульптор — это лишь одно из олицетворений природы,— могут возразить нам; к тому же сам Микеланджело на вопрос о том, как рождаются чудеса его гения, как-то ответил: очень просто — я беру глыбу мрамора и отсекаю все лишнее. Но мы уже знаем, что все противоречия находят свое разрешение в синтетическом единстве результата. Понимал это и Микеланджело, в стихах которого есть и такое:

Когда скалу мой жесткий молоток
В обличия людей преображает, –
Без мастера, который направляет
Его удар, он делу б не помог…

Впрочем, и этим спор не разрешается, поэтому другой дотошный критик мог бы найти основания нового синтеза, пример восхождения к более высоким ступеням обобщений, приведя продолжение сонета:

…Но божий молот из себя извлек
Размах, что миру прелесть сообщает;
Все молоты тот молот предвещает,
И в нем одном — им всем живой урок.
Чем выше взмах руки над наковальней,
Тем тяжелей удар: так занесен
И надо мной он к высям поднебесным;
Мне глыбою коснеть первоначальной,
Пока кузнец господень — только он! —
Не пособит ударом полновесным.

Итак, каждый из пройденных нами этапов обнаруживает новые стороны действительности, обогащает знание, углубляет понимание того, как устроен вполне реальный мир, в котором мы существуем. Словом, мы узнаем о нем все больше и больше… но носитель всех новых качеств практически полностью дематериализуется. Все конкретное и осязаемое в самом начале по мере обобщений растворяется в небытии, оставляя по себе лишь подобие улыбки чеширского кота. И в то же время именно это не существующее ни в одном из физических измерений «ничто» оказывается средоточием «всего», т.е. исчерпывающей полноты определений, объясняющих окружающую действительность.
Таким образом, абсолютная пустота оказывается своей собственной противоположностью, ибо в конечном счете обнаруживает себя вместилищем абсолютной полноты всей «физики», «химии», «биологии», «социологии» вместе взятых, словом носителем последней тайны всеобщего развития. И только эта всеобщая полнота результата обретает возможность руководить возведением его собственных оснований…
Поэтому, если искать истину математики только в самой математике, а физики — в самой физике, мы рискуем не найти вообще ничего. И стоит ли удивляться тому, что Бертран Рассел говорил: чистая математика целиком состоит из утверждений типа: если некоторое предложение справедливо в отношении данного объекта, то в отношении его справедливо некоторое другое предложение. Существенно здесь, во-первых, игнорирование вопроса, справедливо ли первое предложение, и, во-вторых, игнорирование природы объекта… словом, математика может быть определена как наука, в которой мы никогда не знаем, о чем говорим, и никогда не знаем, верно ли то, что мы говорим. Ему вторит физик: «…не существует такого метода доказательства как «индукция». Идея доказательства каким-то образом достигнутой «почти-определенности» в науке — миф. Каким образом я мог бы «почти-определенно» доказать, что завтра не опубликуют удивительную новую физическую теорию, опровергающую мои самые неоспоримые допущения относительно реальности? Или то, что я не нахожусь внутри генератора виртуальной реальности? Но я говорю все это не для того, чтобы показать, что научное знание действительно «второсортно». Ибо идея о том, что математика дает определенности — это тоже миф.
Согласимся, что позиции Канта и Лейбница противоречат друг другу. Однако и мы уже успели задуматься над тем, что все и ничто, конец и начало, дух и материя, Бог… и сам человек каким-то неведомым образом сходятся в таинстве рождения всего нового, начиная с проточастиц и кончая учением, которое трактует о прошлой и будущей истории Вселенной. А ведь по большому счету оба мыслителя, каждый своим путем, обнаруживают прямое тождество все этих же начал. Так, может, именно в тождестве и лежит ключ к решению встающих перед нами загадок?

Мы приводим ссылки на великих мыслителей прошлого как бы в порядке самооправдания, только для того, чтобы показать: сомнения в абсолютной истинности стереотипного ответа на вынесенный в заглавие вопрос — это вовсе не аберрация сознания, не кульбит софистической мысли, имеющий целью запутать собеседника. Строго говоря, вопрос о том, почему получаемые чисто аналитическим путем, что говорится, «на кончике пера», математические истины все-таки подтверждаются нашим опытом, не решен и сегодня. Больше того, решать его, по-видимому, придется еще не одно столетие. И как бы в подтверждение этой мысли мы видим, что не только сложнейшие, требующие предельного напряжения интеллекта, построения высшей математики, но даже простейшая задача обнаруживает сильную зависимость и от каких-то общих господствующих в совокупном сознании цивилизации идей, и от принятой в социуме методологии систематизации явлений. Оказывается, что вне этого «над-математического» аппарата даже школьные задачи строгого решения не имеют.
С Кантом, как впрочем, и с Лейбницем, спорят и по сию пору. И до сего дня очень многие видят в математике выражение некоторой абсолютной истины, которая кристаллизовала в себе обнаженную до голой схемы структуру самой объективной реальности. Однако и через двести лет с лишним многие вынуждены соглашаться с ними…
Разумеется, здесь не ставится задача разрешить вопрос о соотношении результатов абстрактных математических построений и реальной структуры окружающего нас мира. Но, не тяготея ни к одной из этих полярных позиций, мы вправе смотреть на математику, как на методологию человеческого познания. Вернее сказать, как на специфическую проекцию какой-то единой методологии познавательной деятельности человека, ибо математика, разумеется, не исчерпывает эту роль полностью. (Как, впрочем, не исчерпывает ее и наука в целом, ибо познание, как мы уже могли убедиться, немыслимо ни без философского осмысления ее результатов, ни без эстетического освоения мира, ни даже без веры…)
Но если так, то любое противоречие тому результату, который прогнозируется математическими законами, должно выступать не только как индикатор ошибки, но и как побудительный стимул к движению в каком-то новом направлении. Важно понять, что несоответствие результата «сложения» любой заранее затверженной истине — это далеко не всегда ошибка в построениях, не всегда дефект расчета, и способность разглядеть в несоответствии ориентир поиска того, «что» именно «будет» в результате такой операции, — представляет собой обязательный элемент квалификации исследователя. Если такой способности нет, нет и настоящего исследователя, есть лишь простой ремесленник.
Кстати, вывод остается справедливым, абсолютно независимо от того, что именно мы готовы признать в древней науке. Если, вслед за немецким философом (кстати, именно Канту принадлежит мысль о том, что в любой науке ровно столько истины, сколько в ней математики) мы ограничим ее только сферой «трансцендентальной эстетики», необходимо будет согласиться с тем, что любая количественная аномалия потребует не только перепроверки всех логических построений, но и дальнейшего исследования. Если же, напротив, мы увидим в ней отражение не зависящих ни от нашей воли, ни от нашего сознания отношений между явлениями внешнего мира, результат останется тем же самым. Любое несоответствие и в этом случае будет служить указанием на необходимость тщательной перепроверки выполненной процедуры. Но прежде всего — на необходимость глубокого осмысления полученного результата. Другими словами, выполнения того, что в науке называется качественным анализом. Словом, методологическая роль математики заключается в том, что, как бы мы ни относились к результату измерения и сопоставления, любая количественная аномалия безупречно выполненного расчета (понятно, что о формальных ошибках речи вообще не может быть) должна расцениваться как стимул к дальнейшему поиску.
Но возможны ли там, где отвлекаются от всех качественных отличий и обращаются к незапятнанной никакими отличиями чистоте однородного, хотя бы какие-то количественные аномалии? Словом, нам предстоит заняться вещами, которые относятся к одному классу. Понятно, что заниматься операциями с равными порциями «пустоты» затруднительно, поэтому и здесь мы не выйдем за пределы физического. Но все же уровень обобщений и в качественно однородном останется близким к предельному. Впрочем, правильней сказать, что именно здесь, прежде всего здесь он должен достигать границ возможного.

§ 9. Геном в предчувствии кавалерийской атаки

Геродот, рассказывая о лидийцах, упоминает такой факт из истории этого древнего народа. Когда земля, на которой они обитали, была уже не в состоянии прокормить ставшее многолюдным племя, часть народа была вынуждена сесть на корабли и искать счастья у чужих берегов. «Сначала лидийцы терпеливо сносили нужду, а затем, когда голод начал все более и более усиливаться, они стали искать избавления, придумывая разные средства. Чтобы заглушить голод, они поступали так: один день все время занимались играми, чтобы не думать о пище, а на следующий день ели, прекращая игры. Так лидийцы жили восемнадцать лет. Между тем бедствие нее стихало, а еще даже усиливалось. Поэтому царь разделил весь народ на две части и повелел бросить жребий: кому оставаться и кому покинуть родину. Сам царь присоединился к оставшимся на родине, а во главе переселенцев поставил своего сына по имени Тирсен. Те же, кому выпал жребий уезжать из своей страны, отправились к морю в Смирну. Там они построили корабли, погрузили на них всю необходимую утварь и отплыли на поиски пропитания и [новой] родины».
В древнем мире подобная стратегия не была чем-то исключительным. Греки, а в еще большей степени финикийцы именно таким образом заселили все берега Средиземноморья. Да и впоследствии схожий сюжет повторялся неоднократно: так поступали викинги, так заселялась Америка, так заселялась наша Сибирь… словом, вынужденное переселение — это весьма рациональный способ разрешения демографических проблем. Но вот что важно: бесконфликтное его исполнение свидетельствует об очень высоком уровне общественного устройства. Если угодно, — даже об очень высоком уровне общественной морали, ибо это форма сравнительно цивилизованного решения демографической проблемы. Правда, это вовсе не значит того же в отношении тех, кто населяет колонизируемые территории:

... мы достигли прекрасных течений Египта.
Там, на Египте-реке, с кораблями двухвостыми стал я.
Прочим спутникам верным моим приказал я на берег
Вытащить все корабли и самим возле них оставаться,
А соглядатаев выслал вперед, на дозорные вышки.
Те же в надменности духа, отваге своей отдаваясь,
Ринулись с вышек вперед, прекрасные нивы египтян
Опустошили, с собой увели их супруг и младенцев,
Их же самих перебили.

Но вот пример совсем из другой жизни: колонии самых примитивных одноклеточных организмов, испытывая дефицит пищи, в один прекрасный момент сбиваются вместе и начинают формировать какую-то сложную конструкцию, что-то вроде плотного кома, опирающегося на тонкую длинную ножку. Как только длина этой ножки достигает критической величины, ком отрывается и движением воздуха относится на новое место, где образуется новая колония.
Все это очень сильно напоминает известный еще из Геродота сценарий. Но если он реализуется даже на уровне одноклеточных организмов, приходится предположить, что способность действовать в соответствии с этой вечной стратегией каким-то таинственным образом формируется не только в человеческом, но и в любом живом сообществе вообще.
Трудно предположить, что такая стратегия заранее заложена в генетической памяти каждой отдельно взятой клетки. Тем более безъядерной. Поэтому необходимо признать, что там, где из отдельных, наделенных своими особенностями особей формируется новый уровень организации живой материи — сообщество организмов, вдруг появляются и какие-то новые свойства, которыми не обладают индивиды. Но если так, то все эти и, возможно, какие-то иные, о существовании которых мы пока не догадываемся, качества, в свою очередь должны входить в итоговую сумму. Поэтому, строго говоря, там, где в результате интеграции единичных вещей в некую общность формируются дополнительные свойства, «два плюс два» равно сумме, состоящей из уже известного нам и какой-то «дельты качества». Именно эта не всегда заметная (но всегда существующая!) «дельта качества» и концентрирует в себе то, что в действительности отличает один уровень явлений от другого.
Другими словами, теперь мы видим, что «дельта качества» образуется и при сложении изначально однородных величин. Поэтому важно понять: «четыре» и здесь, в сфере однородного, представляет собой не что иное, как формализованное иносказание именно таким образом понятой полноты. Можно сказать и жестче: ничто иное.
Таким образом, если видеть в логической операции обобщения не отвлеченную от всякой конкретики гимнастику ума, но строгий аналог каких-то реальных явлений, ее ни в коем случае нельзя будет свести лишь к отбрасыванию индивидуальных характеристик единичных вещей. Конечно, что-то от индивидуального, должно теряться и здесь, но все же что-то обязано и приобретаться. Поэтому главным в любом логическом обобщении должно быть выявление именно того, что приобретается в дополнение к общей образующейся сумме качеств, а вовсе не того, что остается за вычетом исключаемых из анализа свойств.
Если кого не убеждает приведенный пример, можно сослаться на другой, куда более знаменитый, ибо он восходит к одному из величайших знатоков той материи, которая затрагивается в нем. Поодиночке едва ли не каждый французский солдат,— утверждал Наполеон,— уступал по своим боевым качествам прекрасно вышколенным мамлюкам. «Один мамлюк был сильнее одного француза; он был лучше натренирован и вооружен. Сто мамлюков могли биться со ста французами, имея шансы на успех. Но при столкновении двух отрядов, численность каждого из которых превышала 200 всадников, шансы находились на стороне французов». Во время сирийского похода в сражении при горе Табор двухтысячный отряд французской пехоты под началом одного из наполеоновских командиров в течение целого дня сдерживал яростные атаки 25000 кавалеристов паши Дамаска, которые к тому же были поддержаны десятью тысячами пехоты. При перекличке после сражения обнаружилось, что только два солдата погибли и около шестидесяти были ранены. Таким образом, превосходство дисциплинированной французской пехоты, построенной в каре, перед неорганизованной массированной кавалерийской атакой было продемонстрировано со всей убедительностью. (Впрочем, турок била не только французская пехота: о дивизионные каре будущего российского фельдмаршала П.А.Румянцева под Кагулом разбилась 150-тысячная армия турецкого визиря, поддержанного к тому же 80-тысячной татарской конницей, которая угрожала тылу российского воинства.)
И это притом что по личной выучке кавалеристы всех армий мира всегда превосходили пехотинцев. Кстати, вот пример, подтверждающий это. В январе 1795 года французы узнали, что часть голландского флота замерзла во льду близ Текселя, и выслали против нее сильный отряд конницы. Пройдя форсированными маршами северную Голландию, отряд перешел замерзшее Зюдер-Зее и, окружив недвижный флот, потребовал его сдачи. Никак не ожидавшие подобной атаки командиры судов вынуждены были спустить флаги. Понятно, что не знающая точной наводки, корабельная артиллерия бессильна в такой ситуации, моряки же – не пираты, а в рукопашном бою против прорвавшейся кавалерии и вышколенной пехоте, которая не успела создать строй, устоять трудно.
Еще один пример, известный любому, кто знаком с управлением. При формировании даже простой кооперации исполнителей всегда возникает дополнительная производительная сила: коллектив объединенных в бригаду грузчиков, землекопов и так далее способен обеспечить несколько большую выработку, чем механическая сумма тех же людей, но работающих независимо друг от друга. Используя тот же образный строй, об этом говорил и Маркс: «Подобно тому, как сила нападения эскадрона кавалерии или сила сопротивления полка пехоты существенно отличны от суммы тех сил нападения и сопротивления, которые способны развить отдельные кавалеристы и пехотинцы, точно так же и механическая сумма сил отдельных рабочих отлична от той общественной силы, которая развивается, когда много рук участвует одновременно в выполнении одной и той же нераздельной операции, когда, например, требуется поднять тяжесть, вертеть ворот, убрать с дороги препятствие. Во всех таких случаях результат комбинированного труда или вовсе не может быть достигнут единичными усилиями, или может быть осуществлен лишь в течение гораздо более продолжительного времени, или же лишь в карликовом масштабе. Здесь дело идет не только о повышении путем кооперации индивидуальной производительной силы, но и о создании новой производительной силы, которая по самой своей сущности есть массовая сила». Так что и здесь «два плюс два» равно сумме, состоящей из уже известных нам свойств и некоторой «дельты качества».
Именно эта деформирующая прогнозируемый результат сложения «дельта» наводит на мысль о том, что уровню сообщества (будь то сообщество биологических организмов, солдат, рабочих и так далее), присущ какой-то новый, в принципе неведомый индивидам фактор. Сегодня мы знаем о феномене организации. Нам ясно и то, что принципы организации ни в какой форме не содержатся в генотипе. В самом деле, трудно предположить, что уже генные структуры человека содержат информацию о том, что в виду кавалерийской атаки индивиды должны образовывать прямоугольник, один из углов которого обращен к неприятелю, чтобы, во-первых, рассечь его и уже тем нарушить управление, во-вторых, встретить ружейными залпами сразу двух фасов, а под артиллерийским огнем, — напротив, рассыпать свой строй. Точно так же трудно предположить способность генотипа содержать в себе правила разделения и кооперации труда. Так что новое начало может возникать только там, где возникает какая-то общность. Но о самом существовании этого фундаментального начала мы впервые узнаем лишь из количественных аномалий, возникающих при сложении качественно однородных вещей.

§ 10. Восемь минут в истории Вселенной

Кстати, количественные аномалии вовсе не обязательно должны бросаться в глаза, ибо даже микроскопические, часто играли решающую роль в развитии научных представлений.
Вспомним. В последней четверти XVI века близ Копенгагена на островке Иен была построена обсерватория — замок Уранибург. Европа еще не знала такой обсерватории, которую создал там изобретатель секстанта астроном Тихо Браге (1546—1601), датский астроном, оснастивший ее самыми лучшими инструментами того времени. Изо дня в день с необычайной пунктуальностью и тщательностью он наблюдал движение небесных тел и записывал результаты своих наблюдений. Итогом его 20-летних трудов стала, говоря сегодняшним языком, грандиозная «база данных», касающаяся планет, звезд и комет, которая отличалась не только своей полнотой, но и исключительной точностью. В последние годы своей жизни Тихо Браге оказался в опале и был вынужден жить в Праге, где его помощником стал молодой немецкий ученый Иоганн Кеплер (1571— 1630), немецкий математик, астроном. Год за годом тот обрабатывал результаты наблюдений своего учителя. Им был проделан колоссальный объем вычислений. Напомним, что логарифмы, которые, по словам, Карла Гаусса, удвоили жизнь астрономов, тогда еще не были изобретены (потомок старинного воинственного шотландского рода Джон Непер (1550—1617) опубликует свое знаменитое «Описание удивительных таблиц логарифмов» лишь незадолго до смерти, в 1614 году). Между тем первые два закона Кеплер опубликует в 1610 г. в своей книге «Новая астрономия», третий закон открывается им в 1618. Поэтому труд Кеплера не может не вызвать у нас изумления. Беспощадно требовательный к результату научного анализа, он не остановился даже перед тем, чтобы начать всю работу заново, когда обнаружил, что между теоретически предсказываемым и фактическим положением Марса существует расхождение в восемь минут дуги. Казалось бы, ошибка была не столь и велика, и другой на его месте, возможно, не обратил бы на нее внимание.
Для того, чтобы понять, порядок величины, о которой идет речь, нужно напомнить, что стопроцентное зрение человека позволяет различать объекты, линейные размеры которых достигают одной угловой минуты. Иначе говоря, все, что менее одной угловой минуты, нормальным глазом просто неразличимо. Так что восемь минут — это почти на границе видимости. Например, на том расстоянии, на котором обычно держат книгу, угловая минута — это примерно одна десятая доля миллиметра (стандарт полиграфического качества — 300 точек на дюйм — исходит именно из этой величины). Поэтому текст, набранный шрифтом, размер которого менее восьми угловых минут, т.е. менее 3 типографских пунктов, был бы чрезвычайно труден для восприятия. Ведь различению подлежит не бесформенное пятно, но детали его контура. Для сравнения укажем, что так называемый «мелкий шрифт» всякого рода дополнительных условий, которые хотят скрыть от потребителя, значительно больше.
Но не таков был Кеплер, чтобы пренебречь даже столь малым отклонением от расчетного. Он сам потом писал, что если бы желал пренебречь восемью минутами долготы, то давно закончил бы свой труд. Однако пренебречь ошибкой для него было невозможно. И в конечном счете именно это расхождение привело к одному из самых грандиозных открытий в науке. Девять лет аналитической работы увенчались созданием трех законов движения планет. Ничтожные восемь минут окончательно изменили всю картину мира.
Позднее предсказанные именно его законами отклонения траекторий движения небесных тел послужили индикатором того, что за орбитой Урана должна существовать еще одна массивная планета. И вот в 1846 году И. Галле по теоретическим предсказаниям У. Ж. Леверье и Дж. К. Адамса открывает Нептун, удаленность которого от Земли до того препятствовала его обнаружению.
Таким образом, результат любого сложения не может быть ограничен пустыми рамками какого-то абстрактного, отвлеченного от чего бы то ни было вообще «количества». Он всегда обязан учитывать качественные характеристики и того круга вещей, в котором выполняется «сложение», и той ступени классификации явлений, на которую экстраполируется вывод. Другими словами, получаемый результат еще подлежит определенному истолкованию. Только в контексте этого истолкования, которое обязано принимать в расчет решительно все, что отличает сформированную нами модель от среза объективной реальности, на которую мы хотим его распространить, достигается однозначность прочтения и точность. Взятый же сам по себе, вне какой бы то ни было интерпретации, вывод не говорит почти ни о чем. А зачастую, несмотря на совпадение с прогнозируемым итогом нашего «сложения», лишь заводит в тупик мысль исследователя, ибо это совпадение может быть и случайным.
Впрочем, трудности не ограничиваются только сказанным. Выше мы говорили о том, что приведение разнородных явлений к какому-то единому качеству достигается на пути последовательного обобщения данных. Там же, где анализируются однородные вещи, приходится искать решение не в восхождении к вершинам организации вещества, но в погружении на более фундаментальный уровень его строения. Так, современная физика пытается построить «теорию всего», гипотетическую физико-математическую теорию, которая описывает все известные фундаментальные взаимодействия (мы уже говорили о них), погружаясь в самые глубины атомного ядра.
Но во всех случаях можно заметить одно: теоретический результат осмысления и интерпретации данных, полученных в любом эксперименте, как правило, не имеет почти ничего общего с самими данными. Несколько утрируя действительное положение вещей, можно сказать, что в ходе опыта исследователь имеет дело лишь со стрелкой своего прибора, поэтому непосредственным итогом научного эксперимента является лишь совокупность каких-то абстрактных цифр или отображаемых графиками кривых. Так, например, астроном направляет свой телескоп на объект, удаленный от Земли на огромное расстояние; свет, поступающий в телескоп, он запечатлевает на фотографической пластинке; после этого он пытается придать смысл тем точкам и пятнам, которые отпечатываются на ней, теоретизируя по поводу того, каким может быть источник света. История науки сохранила суждение английского астрофизика, Артура Эддингтон, (1882—1944) который говорил, что для читателя, решившего сторониться теории и признавать только точные факты, которые являются результатом наблюдений, все книги по астрономии неприемлемы. Не существует никаких чисто экспериментальных фактов о небесных телах. Астрономические измерения все, без исключения, представляют собой измерения явлений, происходящих в наземной обсерватории или станции; только посредством теории их превращают в знания о внешней Вселенной.
Словом, задача исследователя состоит в построении такой категориальной системы, которая, не противореча результатам предыдущего опыта поколений его предшественников, объясняла бы и эти цифры, и эти кривые, и эти пятна. При этом в возводимой им теоретической конструкции каждая из цифр, кривых или точек на фотографическом слое обязана быть строго закономерной и необходимой. Кроме того, система должна обладать прогнозирующими свойствами, другими словами, быть в состоянии предсказывать появление каких-то новых цифр или каких-то новых графиков при изменении условий опыта. Ясно, что все это возможно только в том случае, если мы точно определим и глубоко осознаем в первую очередь качественную составляющую результата.
В общем, высшее мастерство исследователя как раз и заключается в способности интерпретировать результаты наблюдений, и чем большая дистанция разделяет масштаб самого эксперимента и масштаб той действительности, на которую распространяются вытекающие из него выводы, тем более велик ученый.
Легенда, когда-то пущенная в оборот Вольтером, гласит, что закон всемирного тяготения появился как результат размышлений Ньютона над падающим яблоком.
Джон Дальтон, о котором уже говорилось здесь, обнаружил всего лишь неодинаковые пропорции углерода и водорода в различных компонентах газов. Но именно это наблюдение в конечном счете привело его к мысли о том, что газы должны состоять из мельчайших частиц — молекул, которые, в свою очередь, должны содержать в себе еще меньшие неделимые далее элементы. Не имея возможности наблюдать их, Дальтон тем не менее установил даже относительные веса многих атомов. Кстати, его имя известно также и в среде дилетантов: ведь именно он первым в 1794 году описал дефект зрения, которым страдал сам, именно этот дефект позже был назван дальтонизмом.
В серии опытов Майкельсона (1852—1931), американского физика определялась лишь скорость прохождения луча света в перпендикулярных направлениях. Самый знаменитый из этих экспериментов был проведен им вместе с Морли (1839—1923), американским физиком, в 1887 году. Созданная ими интерферометрическая установка, как известно, была призвана определить скорость движения земли в мировом эфире. Полученный результат был совершенно неожиданным, если не сказать ошеломляющим. Он говорил о том, что никакого движения нет и в помине, и что, напротив, вся Вселенная, включая Солнечную систему, вращается вокруг маленькой неприметной планеты по имени «Земля». К чести Майкельсона, никто из физиков не усомнился в методологической выверенности и точности выполненной работы. Однако конечный вывод, который был сделан из этого результата позднее, был по-настоящему революционным. Именно он стал одним из краеугольных камней того фундамента, на котором была построена теория относительности. За эти опыты в 1907 году Майкельсону была присуждена Нобелевская премия.
Марсденом, сотрудником Резерфорда (1871—1937), английского физика, заложившего основы учения о радиоактивности и строении атома, было обнаружено, что всего-навсего одна из примерно 20 тысяч альфа-частиц, проходя сквозь золотую фольгу, отклоняется на угол больше 90 градусов. Сам Резерфорд поначалу не поверил результату, но строгость эксперимента не оставляла никакой возможности для сомнений. И вот рассеяние альфа-частиц золотой фольгой были, наконец, объяснены тем, что они проходят на весьма малом расстоянии от других положительно заряженных частиц, размеры которых значительно меньше размеров атомов. Это и было рождением учения об атомном ядре.
В наши дни Дэвид Дойч в своей книге приводит пример рассуждений, приводящих к еще более грандиозным следствиям — к выводу о существовании так называемого мультиверсума, т.е. огромного конгломерата, состоящего из триллионов вселенных, которые насквозь пронизывают нашу, но остаются за пределами видимого. И этот вывод делается из анализа обыкновенной тени, которую отбрасывает один единственный фотон, проходя через перегородку с параллельными щелями. (Справедливости ради, заметим, что впервые идею мультиверсума высказал в 1957 г. Х.Эверетт (1930—1982), американский физик, который, как указывает Википедия, «оставил физику после завершения докторской диссертации, не получив должного отклика от физического сообщества».)
 Все это примеры ярчайших побед человеческой мысли. Но ведь все эти победы начинались с осмысления микроскопических количественных аномалий, которые возникали вопреки абсолютно безупречной логике и технике проводимого исследования.
К слову, тем, кого не впечатляют восемь угловых минут в истории нашей Вселенной, можно привести другой пример. Общая теория относительности, в которую поначалу мало кто верил и еще меньше, кто понимал, предсказывала искривление луча света (до того времени понимавшегося как символ идеальной прямой), если он проходит вблизи массивного космического тела. Чтобы проверить предсказание в ходе солнечного затмения, которое должно было произойти 29 мая 1919 г., Артур Эддингтон организовал экспедицию на остров Принсипе, у западного побережья Африки. Наблюдения были проведены, обработка результатов потребовала времени, и в ноябре того же года газеты сообщили всему миру о революции в науке, о подтверждении нового взгляда на строение Вселенной. Эту революцию возвестила величина, стоявшая на самой грани разрешающей способности всего инструментария начала XX столетия, она была почти в триста раз меньше той, что смутила Кеплера, 0,00049 градуса или 1,75 угловых секунд.
Ну, а кого не приводит в священный трепет и эта величина, приведем еще одну. С появлением квантовой механики и общей теории относительности возникла необходимость согласования обеих теорий. Дело в том, что первая сохраняет свою справедливость на ультрамикроскопическом уровне, вторая — на астрономическом. Противоречие между ними проявляется только там, где масштаб величин становится меньше постоянной Планка, т.е. 10-33 сантиметра. Брайан Грин приводит впечатляющее сравнение: «Чтобы дать представление о масштабах, приведем такую иллюстрацию: если мы увеличим атом до размеров Вселенной, то планковская длина станет равной высоте среднего дерева». Между тем именно этот исчезающий масштаб явлений сегодня оказывается в самом центре научного поиска.

§ 11. Информация для размышления

Заметим, что и сегодня материала для размышлений, которые могут привести к формированию каких-то новых взглядов на устоявшиеся истины, вполне достаточно.
Вот пример. Считается, что возраст нашей планеты составляет около 4,5 миллиардов лет. Этот вывод сделан на основе анализа общих космологических представлений. Но можно ли как-либо проверить это заключение? Восхождение к каким-то еще более общим теоретическим конструкциям уже невозможно. Но точно так же невозможно и построить эксперимент, условия которого соответствовали бы специфическим условиям миллиардолетий космогенеза. Ведь в нашем распоряжении лишь годы, в лучшем случае десятилетия.
Таким образом, необходимо построение условной теоретической модели, качественные характеристики которой могли бы с точностью воссоздать основные параметры истории нашей планеты. Понятно, что уровень тех явлений, которые могут быть положены в основание количественных сопоставлений, будет значительно ниже глобальных вселенских процессов. Но вот беда — практически все попытки верификации дают не стыкующиеся не только с принятым возрастом, но и друг с другом, результаты.
Приведем несколько примеров.
1. В 1960 году было подсчитано, что на Землю ежегодно выпадает от 5 до 15 миллионов тонн частиц межзвездной космической пыли. Если согласиться с тем, что возраст нашей планеты и в самом деле составляет около 4,5 миллиардов лет, то Земля должна быть покрыта слоем космической пыли толщиной в 20—60 метров. При этом известно, что космическую пыль довольно легко отличить от земной: первая содержит примерно в триста раз больше никеля. Поэтому даже в случае ее перемешивания с земной пылью присутствие космической было бы сравнительно нетрудно обнаружить. Однако в действительности такого мощного слоя нигде на Земле обнаружено не было. Кроме того, весьма ограниченное содержание никеля в земной коре, в свою очередь, свидетельствует, что космическая пыль выпадала в куда меньших масштабах, чем это предполагается расчетным возрастом нашей планет. Другими словами, в контексте этой модели она должна быть намного моложе.
2. Считается, что Земля и Луна — это небесные тела примерно одного возраста. Правда, сила тяжести на нашем спутнике существенно меньше земной, но и в этом случае за миллиарды лет на ней должен был накопиться довольно мощный ее слой. Поэтому, когда планировался запуск американских космических аппаратов на Луну, высказывалось вполне обоснованное сложившимися теоретическими представлениями опасение, что они могут просто утонуть в многометровой толще пыли. Именно по этой причине ноги спускаемого устройства снабжались широкими пластинами, которые должны были препятствовать погружению. Известно, что еще раньше, когда планировалась посадка на Луну советского аппарата, возникали точно такие же опасения. Но в конструкторском деле все теоретические сомнения обязаны принимать форму тех или иных инженерных решений. Здесь же отсутствие надежной информации вело к тому, что инженерное решение принималось чисто волевым порядком: рассказывают, что генеральный конструктор дал своеобразную расписку: «Луна твердая», которая обязала проектировщиков игнорировать лунную пыль.
Противоречащая устоявшимся взглядам интуиция не подвела знаменитого конструктора, и впоследствии обнаружилось, что Луна и в самом деле была твердой: слой пыли не превышал одного сантиметра.
Но это вновь означает, что результат значительно расходится с тем, который принят в науке.
3. При превращении урана в свинец выделяется гелий. Со временем он улетучивается из породы и попадает в атмосферу. Таким образом, за расчетное время существования Земли в ее атмосфере должно накопиться довольно большое количество гелия. Однако все инструментальные замеры упрямо свидетельствуют об обратном: фактическое его содержание отклоняется от предсказываемого теорией в тысячи раз. То есть на такую величину, которая никак не может быть игнорирована.
При этом еще необходимо считаться с тем, что гелий мог присутствовать в атмосфере планеты уже при ее рождении. Мало того: земная атмосфера, по-видимому, способна поглощать гелий из космоса. Словом, наличное его содержание очень плохо согласуется с теми выкладками, которые основываются на господствующем предположении о возрасте Земли.
4. Наблюдения показывают, что все реки мира постоянно выносят в мировой океан огромное количество глины, солей, песка и многих других веществ. Объем каждого вещества, ежегодно смываемого в моря, в принципе может быть измерен. А это значит, что, установив общее их содержание в морях, можно рассчитать и то, как долго шел процесс вымывания, другими словами, установить приблизительный возраст самой Земли.
Здесь, правда, нужно учесть по меньшей мере два обстоятельства. Во-первых, то, что в мировом океане уже с самого момента его формирования могло содержаться определенное количество вымываемых веществ, во-вторых, в начале вынос каждого из них должен быть более интенсивным, чем впоследствии. Но даже с учетом этих обстоятельств получается, что возраст Земли не должен превышать нескольких миллионов лет. Так, например, количество соли указывает на возраст в 260 миллионов лет, количество никеля соответствует 9 тысячам, количество свинца — всего 2 тысячам лет. Количество же песка и глины, которое несут с собою водные потоки таково, что все земные континенты были бы попросту смыты в море уже через несколько миллионов лет.
5. Установлено, что напряженность магнитного поля Земли со временем постепенно снижается. Измерения, проводившиеся более века, показали, что интенсивность затухания удваивается в течение каждых 1400 лет. Если экстраполировать эти данные в прошлое нашей планеты, то окажется, что 10000 лет тому назад она должна была представлять собою что-то вроде магнитной звезды. Впрочем, скорее всего она бы просто взорвалась, ибо магнитное поле, которое должно было существовать согласно этим выкладкам в прошлом, предполагает столь высокую температуру планеты, которая несовместима с ее существованием как твердого тела.
Генри Моррис, один из виднейших представителей учения, которое и сегодня отстаивает ту мысль, что наш мир — это не продукт эволюционного развития, но результат Божественного творения, используя обширный пласт источников, свел в единую таблицу результаты определения возраста нашей планеты, полученные с помощью разных методик.

ОЦЕНКИ ВОЗРАСТА ЗЕМЛИ

Процесс

Расчетный возраст

1. Ослабление магнитного поля Земли

10.000

2. Накопление радиоактивного углерода на Земле

10.000

3. Осаждение метеоритной пыли из космоса

Слишком мал для вычисления

4. Вынос первозданной воды в океан

340.000.000

5. Извлечение магмы из мантии для образования земной коры

500.000.000

6. Возраст старейшего из существующих элементов биосферы

5.000

7. Появление человеческих цивилизаций

5.000

8. Проникновение гелия-4 в атмосферу

1.750—175.000

9. Количество людей на Земле

4.000

10. Вынос осадка по рекам в океаны

30.000.000

11. Эрозия материковых отложений

14.000.000

12. Вымывание натрия из материков

32.000.000

13. Вымывание хлора из материков

1.000.000

14. Вымывание кальция из материков

12.000.000

15. Вынос карбонатов в океан

100.000

16. Вынос сульфатов в океан

10.000.000

17. Вынос хлора в океан

164.00.000

19. Вынос урана в океан

1.260.000

20. Выход нефти на поверхность под давлением

10.000—100.000

21. Образование радиоактивного свинца путем захватывания нейтронов

Слишком мал для измерения

22. Образование радиоактивного стронция

Слишком мал для измерения

23. Ослабление природного остаточного палеомагнетизма

100.000

24. Распад углерода-14 в докембрийскую эпоху

4.000

25. Распад урана с исходным «радиоактивным» свинцом

Слишком мал для измерения

26. Распад калия с содержанием аргона

Слишком мал для измерения

27. Образование речных дельт

5.000

28. Выход нефти со дна океана

50.000.000

29. Распад природного плутона

80.000.000

30. Смещение линий галактик

10.000.000

31. Расширяющийся межзвездный газ

60.000.000

32. Распад комет малого периода обращения

10.000

33. Распад комет большого периода обращения

1.000.000

34. Притяжение небольших частиц к Солнцу

83.000

35. Максимальное время метеоритных дождей

5.000.000

36. Накопление пыли на Луне

200.000

37. Нестабильность колец Сатурна

1.000.000

38. Утечка метана с планеты Титан

20.000.000

39. Замедление вращения Земли приливным трением

500.000.000

40. Охлаждение Земли из-за утечки тепла

24.000.000

41. Накопление известковых отложений на дне моря

5.000.000

42. Вынос натрия в океан через реки

260.000.000

43. Вынос никеля в океан через реки

9.000

44. Вынос магния в океан через реки

45.000.000

45. Вынос кремния в океан через реки

8.000

46. Вынос калия в океан через реки

11.000.000

47. Вынос меди в океан через реки

50.000

48. Вынос золота в океан через реки

560.000

49. Вынос серебра в океан через реки

2.100.000

50. Вынос ртути в океан через реки

42.000

51. Вынос свинца в океан через реки

2.000

52. Вынос олова в океан через реки

100.000

53. Вынос алюминия в океан через реки

100

54. Вынос лития в океан через реки

20.000.000

55. Вынос титана в океан через реки

160

56. Вынос хрома в океан через реки

350

57. Вынос марганца в океан через реки

1.400

58. Вынос железа в океан через реки

140

59. Вынос кобальта в океан через реки

18.000

60. Вынос цинка в океан через реки

180.000

61. Вынос рубидия в океан через реки

270.000

62. Вынос стронция в океан через реки

19.000.000

63. Вынос висмута в океан через реки

45.000

64. Вынос тория в океан через реки

350

65. Вынос сурьмы в океан через реки

350.000

66. Вынос вольфрама в океан через реки

1.000

67. Вынос бария в океан через реки

84.000

68. Вынос молибдена в океан через реки

500.000

Результаты говорят сами за себя: при желании возраст нашей планеты может быть равен чему угодно.
В свете всего сказанного в этой главе можно понять и другое: разногласие приведенных вычислений во многом вызвано тем, что анализ каждый раз проходит мимо скрытого действия какой-то «дельты качества». А следовательно, этим модификациям ответа на все тот же вопрос «сколько будет?» нет и не может быть никакой веры, если они не принимают в расчет того, «что» именно «будет». Поэтому даже беглый взгляд на разброс приведенных Моррисом величин заставляет всерьез задуматься о том, действительно ли история происхождения и развития нашей Вселенной такова, какой она предстает в теории «Большого взрыва»? Словом, неслучайно вновь и вновь возрождается взгляд на мир как на продукт Божественного творения. Кстати, приведенный здесь перечень методик фигурирует в одном из самых фундаментальных трудов одного из виднейших сторонников современного креационизма. Фигурирует именно в качестве опровержения господствующей теории всеобщего эволюционного развития.

§ 12. Замысел Творца и «волны будущего»

В общем, сказывающееся при сложении как однородных, так и качественно несопоставимых вещей, проявление «дельты» неизвестного «качества», которая скрывает в себе недостающий результат сложения, заставляет задуматься о более фундаментальных началах нашего мира. Ведь без этого «последний знак после запятой» в искомой сумме не сможет быть установлен. Но обращение к ним, среди прочего, дает основание усомниться в справедливости той детерминации, о которой говорил Лаплас, т.е. в жесткой однозначности причинно-следственной связи. Следы недостающего в полной сумме обнаруживаются только там, где в расчет принимается возможность следствий оказывать свое — возвратное — воздействие на причину и как-то по-своему корректировать ее. Во всяком случае односторонняя детерминация, в которой предельно простые элементы мира, механически комбинируясь и комбинируясь друг с другом, порождают все более сложное и развитое, не способно объяснить не только всю материальную действительность в целом, но, как мы видим, даже результат простого арифметического сложения.
Идея обратной детерминации тоже не нова. Выше (1.5) уже говорилось о «Науке Логики» Гегеля, и здесь уместно добавить: вершиной очерченного в ней развития, которое начинается с абсолютного Ничто, становится столь же Абсолютный дух, который вбирает в себя без исключения все определения Макрокосма. Полный круг мирового движения предстает как поступательное воплощение этого философского аналога Бога, создателя Вселенной. Поэтому в структуре всеобщей эволюции провидимый Абсолютным ли духом, Творцом ли нашего мира результат (следствие) не может не взаимодействовать с Его замыслом (причиной). Равно как и со всеми промежуточными стадиями своей собственной самореализации. Но и восхождением к вершине, которым руководит не одна прямая (от причины к следствию), но и обратная (от следствия к причине) детерминация явлений, не полагается конец личной истории этого демиурга: она продолжает и продолжает вершиться — вот только теперь уже в новом цикле движения, которое концентрирует в себе весь предыдущий опыт. Достигнутый даже в предельной точке восхождения результат оказывается лишь промежуточным, потому что этим начинается очередной виток единой космологической спирали Его собственного самопознания, где предметом творческих преобразований становятся уже не первоначала созидаемой действительности, но вся свершившаяся история мира. Таким образом, в грандиозной, не до конца понятой еще и сегодня, философской системе немецкого мыслителя процесс обоснования логических категорий оказывается диалектическим иносказанием всеобщей истории «мерами загорающегося и мерами потухающего» Космоса, которая вершится отнюдь не как линейный однонаправленный поток. Повторяясь и повторяясь в восходящих витках нескончаемой спирали развития, история (а с ней и само время) оказывается как минимум двухмерной.
Есть основания думать, что история мира — это не подобие препарированной лягушки, которая отбрасывается прочь с завершением разового эксперимента, но непрекращающийся в новых кругах восхождения поиск (этической… какой-то иной?) истины. Не исключено, что в ходе этого поиска представляется шанс реализации любой из всего веера возможностей, что открываются перед нами буквально на каждом шагу, где приходится делать выбор…
К слову, об этом же — пусть глухо — говорится в первых главах книги Бытия, где о сотворении человека в разной форме упоминается дважды. Да и человек оказывается вовсе не единственным, кто населял землю. «Когда люди начали умножаться на земле и родились у них дочери, тогда сыны Божии увидели дочерей человеческих, что они красивы, и брали их себе в жены, какую кто избрал». «В то время были на земле исполины, особенно же с того времени, как сыны Божии стали входить к дочерям человеческим, и они стали рождать им: это сильные, издревле славные люди». Сгинувшие куда-то после потопа все они остаются в прошлом, свершившемся, круге бытия... Поэтому не законченность застывающего в вечности Слова, но живое биение творящей гармонию мысли явственно различается в библейском сказании о сотворении мира.
Это же мы читаем и в концепции сменяющих друг друга пяти веков, которая была изложена Гесиодом в его поэме «Труды и дни». Давно прошедший

(Был еще Крон-повелитель в то время владыкою неба)

«золотой век» человечества, время всеобщего благоденствия и мировой гармонии:

Жили те люди, как боги, с спокойной и ясной душою,
Горя не зная, не зная трудов. И печальная старость
К ним приближаться не смела. Всегда одинаково сильны
Были их руки и ноги. В пирах они жизнь проводили.
А умирали, как будто объятые сном. Недостаток
Был им ни в чем неизвестен.

последовательно сменяется прогрессирующим упадком «серебряного», за ним «медного», далее — «века героев», наконец,— просто «железного века». Этот последний переполняет мир страданием и болью.

(Если бы мог я не жить с поколением пятого века!
Раньше его умереть я хотел бы иль позже родиться.)

Но по завершении «железного» зло мира полностью исчерпывает себя и цикл времен повторяется, начинаясь с новым «золотым веком».
Впрочем, древняя легенда об утрате и грядущем возвращении безмятежного времени свойственна не только греческой мифологии; она содержится во всех культурах; возвращение «золотого века» — счастливый сон всех народов мира, и кстати, «царствие небесное» на земле, как, впрочем, и коммунистический идеал, — это род все той же не умирающей мечты человека.
Мы не должны пренебрегать ни библейскими, ни мифологическими сюжетами. За ними стоят вовсе не пустые «сотрясения воздуха»; часто (не всегда) здесь кроются глубокие интуитивные прозрения о самых фундаментальных началах. Вспомним мысль Шопенгауэра (1788—1860), немецкого философа: непознанное в нас самих и непознанное в окружающем мире имеет одну и ту же природу, а значит, результаты взаимодействия этих «вещей в себе» друг с другом не могут оставаться непроницаемыми для нашего сознания, трансцендентными по отношению к нему. Всякое взаимодействие обязано оставлять — и оставляет — свои, пусть до поры не замечаемые нами, следы, которые не могут не направлять развитие нашей мысли.
Любое проявление любой жизнедеятельности, говорит его философия, — это ничто иное, как реализация воли действующего субъекта. Последняя же не принадлежит миру физических явлений, т.е. миру чувственно воспринимаемых вещей. Но вместе с тем воля и действие — это одно и то же. Так одно и то же — физический закон и его проявление, хотя в сфере абстрактной мысли мы свободно разделяем два эти понятия. Воспринять сам закон непосредственно, мы не в состоянии, нам доступно лишь его проявление в реальном телесном движении, в тех изменениях, которые мы фиксируем в своем материальном окружении. Отсюда можно сделать вывод о том, что сущность всего сокрытого от нас только представляет себя в устойчиво повторяющемся действии, но никоим образом не сводится к нему.
Чужая душа потемки,— гласит пословица, но все же какие-то заключения о ней мы готовы сделать по ее проявлению в реальных поступках. В сущности то же можно сказать и о «душе» нашего мира, его совокупной воле. Между тем человек — это, кроме прочего, такое же материальное тело, как и его физическое окружение, а следовательно, его собственное бытие должно подчиняться тем же силам, что приводят в движение все познаваемое им. Словом, любое телесное движение вообще, в том числе и наша деятельность в частности, лишь представляет в виде специфической проекции на условную плоскость нашего восприятия некую интегральную волю. Сама же по себе она не сводится к такой проекции. Так (образ, принадлежащий Платону) находящееся у нас за спиной тело способно отбрасывать тень, по которой мы получаем возможность судить и о его форме, и о ее изменениях. «…Люди как бы находятся в подземном жилище наподобие пещеры, где во всю ее длину тянется широкий просвет. С малых лет у них там на ногах и на шее оковы, так что людям не двинуться с места, и видят они только то, что у них прямо перед глазами, ибо повернуть голову они не могут из-за этих оков. Люди обращены спиной к свету, <…> а между огнем и узниками проходит верхняя дорога, огражденная <…> невысокой стеной <…>, за этой стеной другие люди несут различную утварь, держа ее так, что она видна поверх стены; проносят они и статуи, и всяческие изображения живых существ, сделанные из камня и дерева. <…> …ты думаешь, что, находясь в таком положении, люди что-нибудь видят, свое ли или чужое, кроме теней, отбрасываемых огнем на расположенную перед ними стену пещеры?» И все же, развиваясь и совершенствуясь, наши наблюдения за поведением этих «теней» способны давать все более и более точные представления о самой действительности.
Весь мир как чувственно воспринимаемое движение — это реализация одной огромной вселенской воли,— говорит Шопенгауэр. Эта воля пронизывает всю историю, все настоящее и все будущее вещественности. А значит, и воля самого человека — это не более чем часть единой мировой воли, которая в равной степени, но в разной форме проявляется в одушевленной и неодушевленной природе. Относительная автономность человека от физического мира, его исключительность не более чем иллюзия, которая порождается видовыми особенностями аппарата его психики. Так могла бы позиционировать себя любая клетка нашего организма (для справки: с позиции биологии клетка — это тоже организм, т.е. вполне самостоятельное существо, живущее какой-то своей индивидуальной жизнью).
Именно принадлежность человеческой воли к единому первоначалу мира и делает возможным познание самого существа явлений, а не только их видимости.
Но ведь и «Я», о котором говорили Декарт и Фихте, тоже не ограничивается кожными покровами индивида, но — как капля воды, растворенная в океане, становится самим океаном, как частная жизнь отдельно взятой клетки сливается с целевой деятельностью человека, — в конечном счете сливается с «Я» всего нашего мира. Другими словами, мы не вправе смотреть на самих себя как на некую суверенность, способную противопоставить себя объективной реальности. В реализации частной воли постигающего мир человека необходимо различать дыхание некоего целого: Абсолютного ли Ничто, которое в своем последовательном саморазвитии порождает все определения физической реальности; разлитой ли в мировом пространстве «преджизнью»; или любого другого аналога первоначала, творящего гармонию Вселенной,— назовем это как угодно...
Может быть, все то, о чем будет говориться дальше, иными словами, о том, что будущее способно влиять на свое прошлое, а следствие — на свою причину, очень трудно понять. Но познавательные «отмычки» существуют для многих, даже для самых «заоблачных», абстракций. Вот так и здесь. Представим себе творчество литератора, создающего какой-то свой мир. Понятно, что его труд занимает годы и годы, но для героев вымышленной им действительности он, доделывая и совершенствуя созданное, вершится за пределами того времени и того пространства, в котором живут они сами. Поэтому, если обитатели сотворенного литературной фантазией мира вдруг задумаются о своем создателе (вообразим такое и на минуту встанем на их место), то он предстанет перед ними как внефизическая надматериальная сущность, как некий вселенский Дух. Впрочем, можно назвать Его как угодно — отличительной чертой станет то, что во всей полноте своих определений Он окажется существующим в каждой точке их пространства и проявляющим всего себя в каждый момент их времени. При этом вся бесконечность их пространства и вся вечность их времени окажутся сведенными в объем Его самосознания. Другими словами, вне пределов их времени может существовать иное его измерение, в котором единая точка самосознания вселенского Духа способна вместить в себя одновременно все прошлое и все будущее вымышленной действительности. Конечно, о реальной истории Автора никто из жителей виртуального мира не сможет составить решительно никакого понятия, но принципиальная невозможность ограничить время всего одним измерением станет вполне очевидной. Очевидной станет и неизбежность взаимодействия обоих измерений.
Все это легко иллюстрируется в системе декартовых координат, образуемых двумя взаимно перпендикулярными осями. История героев литературного вымысла (представим ее в виде череды событий abcdef) откладывается на оси Х, история автора (ABCDEF) — на оси Y. Сюжетная интрига может меняться в каждой точке истории автора, как меняется тест его рукописи по мере развития и совершенствования творческого замысла:
A:        a1…..c1…..e1f1
B:        a2b2c2….e2f2
C:        a3b3c3d3e3f3

Но может и застыть, как застывает текст после сдачи рукописи в печать:
D:        a4b4c4d4e4f4
E:        a4b4c4d4e4f4
F:         a4b4c4d4e4f4
В этой системе координат в каждую точку истории автора целиком и полностью укладывается вся история его героев, от пролога до эпилога. В свою очередь, на каждое событие последней проецируется все множество событий, меняющих свою определенность от одной авторской правки к другой; при этом для жителей вымышленного мира, несмотря на одновременность, все они остаются за пределами доступного их наблюдению. В целом же все поле обеих историй предстает как одна из возможных моделей того универсума, о котором говорит Д.Дойч.
Кстати, в роли такого литератора каждый может представить и самого себя; в конце концов речь идет не о качестве литературного продукта, но о логическом принципе. Поэтому каждый из нас может ощутить в самом себе всю бесконечность сведенного в точку пространства замышленного мира и в такую же точку сиюминутности — всей его истории. Равно как и всю сложность взаимодействия логики собственной мысли и законов развития той, вложенной в нее вселенной.
Для тех же, кто привычен к сложным абстракциям, скажем, что, вопреки обыденным представлениям, обратная детерминация явлений характеризует и нашу действительность. И в нашем мире поведение предмета определяется не только воздействием предшествующих событий (всей цепи причин, начиная с «пролога»), но и давлением всей совокупности следствий (включая «эпилог»).
Именно такое положение вещей является пусть и неявным, но все же одним из ключевых определений самой материи (понятой не как физическая, но как строгая философская категория). Материя немыслима без движения, но вместе с тем не имеет собственного развития, понятого как поступательное восхождение от чего-то простого к сложному. В любом сколь угодно малом интервале бытия она обязана проявлять себя целиком и полностью — от первичных суперструн до порождений абстрактной гуманитарной мысли. Кстати, Лейбниц, в уже цитировавшейся здесь «Монадологии» («…каждая монада должна изначально содержать в себе весь мир <...> иначе не было бы возможно, чтобы всякая часть материи была в состоянии выражать весь универсум») отталкивался не только от учения древних атомистов, но и от этого представления. Не случайно понятие о материи в этом пункте оказывается полностью симметричным понятию Бога, который так же не может развиваться. В противном случае Он не может быть совершенным.
Кстати, первым об этом сказал тот же Платон, разделивший все сущее на три рода:
— вечные неизменные идеи,
— изменяющиеся вещи,
— наконец, пространство, в котором существуют последние:
«приходится признать, во-первых, что есть тождественная идея, нерожденная и негибнущая, ничего не воспринимающая в себя откуда бы то ни было и сама ни во что не входящая <…>. Во-вторых, есть нечто подобное этой идее и носящее то же имя — ощутимое, рожденное, вечно движущееся, возникающее в некоем месте и вновь из него исчезающее, и оно воспринимается посредством мнения, соединенного с ощущением. В-третьих, есть еще один род, а именно пространство: оно вечно, не приемлет разрушения, дарует обитель всему роду…»
Именно эта не находящаяся нигде среди мира вещей, «тождественная нерожденная и негибнущая идея» и станет философской предтечей Бога, именно она возродится и в Абсолютном духе Гегеля. Ничто из воспринимаемого нами не существует вне ее и без нее,— подводят итог собеседники его «Парменида»:
«Парменид. Следовательно, если единое не существует, <…> то и иное не существует и его нельзя мыслить ни как единое, ни как многое <…> ни вообще как имеющее другие признаки <…>.
Аристотель. Истинная правда».
Правда, такая точка зрения вызывает неприятие у многих верующих: ведь отсутствие развития означает неподвижность, смерть, а значит,— равносильно опровержению бытия Бога. Но здесь важно понять вот что: личная история Создателя, которая, конечно же, должна существовать (мы уже видели возможность этого в запечатленном книгой Бытия биении мысли), лежит вне пространственно-временного континуума сотворенной действительности. Пути развития целостного организма неведомы отдельно взятой клетке, даже если это элемент центральной нервной системы; вне континуума вымышленного мира протекает и история его автора... Все это справедливо и по отношению к Богу, и его зеркальному отражению — материи. В пределах последней развитие, понятое как цепь поступательных преобразований, возможно лишь для ее отдельных разновидностей, своеобразных «клеток», не ведающих о смысле бытия целого. Любое же преобразование отдельных форм организации материи обязано подчиняться всей сумме законов, властвующих в мире. В том числе и тех, которые еще не открыты нами. А следовательно, развитие любой части подчинено и законам движения наивысших форм (включая те, которые превосходят наш собственный разум). Подчинение же последним — это и есть предопределение следствием своей собственной причины, давлением «эпилога» на «пролог». Если исключить такую возможность, единственной реальностью и в самом деле останутся лишь базовые элементы, которые не нуждаются ни в чем отличном от себя, ибо способны самостоятельно преформироваться во что угодно. Включая и ту философскую мысль, которая пытается постичь это невероятие.
Платон мог говорить только о том пространстве (и времени), которое жило в интуитивном представлении его современников, у Евклида оформилось в систему постулатов и аксиом и просуществовало неизменным вплоть до конца XIX века. Но уже Лейбниц не удовлетворялся определениями Ньютона, притом что именно его открытия пролили свет на многое:

Был этот мир глубокой тьмой окутан,
Да будет свет! — и вот явился Ньютон.

Представление же Гегеля готовило умы для того, чтобы поставить все с ног на голову (или, наконец, с головы на ноги?), в частности, и для того, чтобы

«пришел Эйнштейн — и стало все как раньше».

Впрочем, на первый взгляд кажущаяся настоящим сумасшествием, возможность будущего воздействовать на прошлое, не вызывает отторжения и у современной физики. Обратимся к знаменитым лекциям Ричарда Фейнмана (1918—1988), одного из создателей атомной бомбы, лауреата Нобелевской премии по физике 1965 года. В одной из них («Различие прошлого и будущего») говорится, что необратимость явлений должна была бы объясняться тем, что у некоторых законов движения атомов существует только одно направление — от прошлого к будущему. Иными словами, где-то в природе должен существовать принцип вроде: «Из елки можно сделать палку, а из палки не сделаешь елки», в связи с чем наш мир может менять свой характер только с елочного на палочный, но никогда в обратном направлении. Однако такой принцип не найден, во всех законах физики, обнаруженных до сих пор, не наблюдается никакого различия между движением в прошлое и будущее.
«Обратимся еще раз к закону всемирного тяготения,— говорит Фейнман. Рассмотрим Солнце и планету, которая вращается вокруг Солнца в некотором направлении. Заснимем это движение на кинопленку, а затем покажем отснятый фильм задом наперед. <…> Мы увидим, что планета вращается вокруг Солнца, правда, в обратном направлении, и траектория ее движения образует эллипс. Скорость движения планеты оказывается такой, что за равные промежутки времени радиус, соединяющий Солнце и планету, описывает всегда равные площади. В действительности все будет точно таким, каким это должно быть. Нам не удастся решить, в каком направлении нам показывают фильм — в прямом или обратном. <…> Эту мысль можно выразить еще более точно. Если в какой-то сложной системе скорости всех частиц вдруг мгновенно изменят свои значения на обратные, то система вернется в исходное положение, пройдя в обратном порядке все те стадии, которые она уже прошла до внезапного изменения скоростей. Так что если имеется множество частиц, выполняющих какую-то работу, и мы мгновенно изменим их скорости на обратные, то частицы эти полностью исправят все то, что они успели к этому моменту сделать».
Это свойство заложено в самой формулировке законов Ньютона, которые допускают изменение «t» на «минус t». Так что картина фильма, прокручиваемого в обратном направлении, ничем не противоречит теории. Отсюда, движение от прошлого к будущему и от будущего к прошлому физически равновозможны.
Можно ли отмахнуться от таких абстрактных «игр разума»? Конечно же, нет. Ведь, именно непротиворечивость замены «плюса» на «минус» позволила сначала П. Дираку (1902-1984), английскому физику, одному из создателей квантовой механики в 1931 г. сделать предположение о существовании положительно заряженного «двойника» электрона — позитрона, который в 1932 г. был экспериментально обнаружен в составе космических лучей. Так возникло представление об антиматерии. Первым объектом, целиком составленным из античастиц, был синтезированный в 1965 году анти-дейтрон; затем были получены и более тяжелые антиядра. В 1995 году в ЦЕРНе был синтезирован атом антиводорода, состоящий из позитрона и антипротона. В последние годы антиводород был получен в значительных количествах и было начато детальное изучение его свойств. В 2010 году физикам впервые удалось кратковременно поймать в «ловушку» атомы антивещества; в общей сложности было поймано 38 атомов, которые удерживались 172 миллисекунды. В мае 2011 года было поймано уже 309 антипротонов, которые удерживались 1000 секунд. Так что вымысел, положивший начало сюжетной интриге «Ангелов и демонов» Дэна Брауна, лишь немногим опережает реальные достижения современной науки.
Но если существует движение из будущего в прошлое, могут ли фейнмановские «волны» остаться безучастными к настоящему, к тем физическим («химическим», «биологическим», «социальным») явлениям, из которых складывается вся наша повседневность, и не является ли «замысел Творца» иносказанием именно этого потрясающего воображение феномена? Столь ли далеки от действительности грандиозная система Гегеля, в которой Абсолютный дух, вершина развития, определяет и собственное рождение из абсолютного Ничто, и все последующие стадии своего восхождения к ней, и «преджизнь» Тейяра де Шардена, и фихтевское «Я», и воля Шопенгауэра, и многое-многое другое, оставшееся за рамками сказанного…

§ 13. Что такое «сколько будет»?

Таким образом, мы видим, что результат анализируемого нами «сложения» — это прежде всего содержательное начало, и именно качественная составляющая итога требует уяснения в первую очередь. Видеть в нем чистую игру не замутненных ничем вещественным количеств, значит не увидеть ровным счетом ничего. Колючая проволока имеет мало общего и с ежами и с ужами, «солдаты» — с «милиционерами» и «докторами», «списочные» работники — с «машинорейсами» и «явочной численностью», масса, пространство и время — со всем перечисленным. И все же получаемый каждый раз результат обязан быть именно таким, каким он предстает перед нами: «Отбросьте все невозможное, то, что останется, и будет ответом, каким бы невероятным он ни казался».
Вот только важно понять: ответ предопределяется не правилами арифметики, но одновременным действием всех законов природы. А следовательно, «равночетыре» не столько счетное понятие, сколько иносказание именно этой полноты и именно этой синхронности. Словом, эвфемизм, скрывающий в себе бездонную бездну смысла, и упустить хоть что-то из таимого ею — значит поступиться самой истиной.
Как кажется, здесь вполне допустима аналогия с понятиями, относящимися к другим областям знаний. Как формула ДНК кодирует собой ключевые формы связи организма и его среды, так действие математических формул обусловлено тем обстоятельством, что они являются чистым концентратом, квинтэссенцией сводимой в подобие оптического фокуса целостности и завершенности мира. Не прямые астрономические наблюдения и даже не физические опыты — математические формулы обнаруживают искривление пространства, антимиры, наконец, то обстоятельство, что в наблюдаемой Вселенной привычное нам вещество занимает лишь 5% объема, еще 25% занимает так называемая темная материя, а остальное пространство — темная энергия. О существе всех этих «темных» начал мы пока не знаем практически ничего, но гарантией строгости всех открывающихся нам истин, в том числе и той, справедливость которой исследуется в этой книге, вне всякого сомнения являются и они.
В средние века говорили, что Вселенная создана Творцом по математическому плану поэтому, изучая математику, мы постигаем Его замысел, и в известной мере это утверждение справедливо. Причем справедливо как для тех, кто верует в своего Создателя, так и для всех, кто поклоняется его философским аналогам.
Если не ограничиваться чисто количественным контекстом, мы вправе положиться на абсолютную точность того, что скрывается под символом «четыре». Вот только что именно скрывает итог — вопрос. Ну и, разумеется, здесь всегда будет оставаться достаточно пространства для непознанного, поэтому получаемый ответ, сколь бы строгим он ни был, никогда не станет конечным.
Здесь уже приводилось утверждение о том, что математический объект вообще нематериален, что это своеобразная «улыбка» исчезающей под микроскопом анализа вещественности. В 2008 г. польский священник и математик 72-летний профессор Михаль Геллер получил престижную премию (820 тыс. евро) за работу, в которой доказывалась нематериальность мира, и, следовательно, косвенно подтверждалось существование Бога. Но все же не забудем, что Его слово получило воплощение в объективной реальности. По-видимому, и математический объект — это не знамение полной дематериализации всего сущего, но высшая форма проявления всех атрибутов вещественности.
В этой связи мы вправе сказать, что каждая из наук — это не более чем проекция всеобщих математических истин на какую-то свою специфическую плоскость: «физики», «химии», «биологии», «социологии»… Лишь все отрасли вместе способны раскрыть действительное содержание абстрактных уравнений. Говоря коротко, по-видимому, есть два полюса единого знания: математика, которая как бы из самой себя порождает все его частные формы, и философия, что сводит последние воедино, все остальное располагается между ними и в той или иной мере испытывает нас себе воздействие обеих. Впрочем, и это еще далеко не все, ибо существует чувственное, эстетическое, нравственное, религиозное познание, и откровения этих сфер нашего духа в свою очередь скрепляют все математические, равно как и все философские, конструкции.
В системе наших знаний и сегодня существует очень много такого, что содержит в себе возможность принципиально нового взгляда на природу вещей. Поэтому не случайно общий вывод цитировавшейся здесь фейнмановской лекции гласит: «Ни понимание природы зла, добра и надежды, ни понимание основных законов в отдельности не могут обеспечить глубокого понимания мира. Поэтому неразумно, когда те, кто изучает мир на одном конце иерархической лестницы, без должного уважения относятся к тем, кто делает это на другом конце. <…> Вся огромная армия исследователей, работающих на всех ступенях нашей лестницы от одного края до другого, постоянно совершенствует наше понимание мира, и мы постепенно постигаем все колоссальное переплетение иерархий».

Причем тут «дваплюсдва»? Да притом что постижение сути вещей никоим образом не сводится к изучению исключительно внутрицеховой информационной базы. Любое новое знание рождается только там, где анализ выходит и на междисциплинарный уровень, и на уровень самых широких философских обобщений. Впрочем, и этого недостаточно. Необходимо осознать еще и то непреложное обстоятельство, что строго рациональный метод не обладает никакой монополией на истину, ибо в конечном счете человеческое познание опирается и на все другие, не исключая иррациональных, формы духовного поиска. Поэтому тот, кто считает излишним утруждать себя изучением всего того, что выходит за узкие рамки специальности, заранее или, говоря языком великого Канта, a priori обречен на творческое бесплодие.

Выводы

1. Мы обнаружили, что результат любых исчислений верен лишь для того уровня явлений, на котором он был получен. Поэтому, как только мы совершаем его экстраполяцию на какую-то иную совокупность объектов материальной действительности, должна обнаруживаться та или иная количественная аномалия. Правда, не всегда это бывает, случается, что итог совпадает с тем, который предсказывается формальными правилами. Но если мы хотим остаться верными строгим методологическим принципам, необходимо понимать, что при обращении к более широкому кругу явлений такое совпадение может быть чисто случайным. Или ошибочным.
2. В том случае, если сравниваемые нами начала качественно неоднородны, все логические операции с понятиями о них, которые предшествуют собственно количественному анализу, влекут за собой деформацию их содержания. Поэтому любая до-количественная обработка изучаемого предмета — это не только исключение специфических, индивидуальных характеристик вещей, но и выявление каких-то дополнительных (до поры вообще неизвестно откуда возникающих) свойств. Но то же самое — пусть и в других формах — мы обнаруживаем и при сопоставлении качественно однородных явлений. Вследствие этого конечный результат количественного анализа всегда будет испытывать воздействие какой-то «дельты качества», и обязанностью исследователя является выявление степени этого воздействия, выявление того, что именно вносит новое «качество» во все производимые нами расчеты и измерения.
 3. Собственно математический объект, иными словами то, над чем и совершаются все математические действия,— это чистая абстракция, он не имеет абсолютно никакого физического аналога. Но это не значит, что все результаты вычислений представляют собой фикцию. Математика вправе рассматриваться нами как ключевой элемент некоторой общей методологии научного исследования. Поэтому любое противоречие тому результату, который прогнозируется ею, выступает не столько индикатором ошибки, сколько сигналом необходимости движения в каком-то новом направлении. Важно понять, что несоответствие результата «сложения» любой заранее затверженной истине — это далеко не всегда дефект измерения или расчета, и способность разглядеть в нем ориентир поиска того, «что» именно «будет» в результате этой операции, — это обязательный элемент квалификации исследователя. Если нет такой способности, нет и настоящего исследователя, есть лишь ремесленник.
4. Отсюда получается, что «2+2=4» — это вовсе не знак запечатленного итога какого-то сложного расчета, но символ никогда не кончаемого процесса. Уже это наводит на мысль о том, что и сама истина, которая является целью любого познания,— это вовсе не застывшая «фотография» умосостояния научного сообщества на какой-то фиксированный момент времени, но подчиненный строгой методологии и устремленный в будущее процесс.


Законы XII таблиц. III, 5—6

Цицерон в своем сочинении «О государстве» (II, 62) пишет: «…децемвиры, прибавив две таблицы несправедливых законов, бесчеловечным законом воспретили браки между плебеями и «отцами», хотя обыкновенно разрешаются даже браки с иноземцами»

См. например, Хейнрих Бернд. Ворон зимой. М.: Мир, 1994

БСЭ III изд. Ст. Анекдот

  Поэзия Микеланджело. М.: Искусство, 1992.

Дойч Дэвид. Структура реальности. Москва-Ижевск, 2001, с. 239

Геродот. История. I, 94

Гомер. Одиссея. XIV, 257—265

Наполеон I Бонапарт. Кампании в Египте и Сирии (1798—1799 гг.)

Маркс К. и Энгельс Ф. Соч., 2 изд., т. 23, с. 337.

Вайнберг С. Открытие субатомных частиц. М.: Мир, 1986, с. 171

Дойч Дэвид. Структура реальности. гл. 2 Тени. Москва-Ижевск, 2001

Грин Б. Элегантная Вселенная, Суперструны, скрытые размерности и поиски окончательной теории. М.: Едиториал УРСС, 2004, с. 93—94.

Хобринк Бен. Христианский взгляд на происхождение жизни. Киев, 1994, с. 76. (Со ссылкой на Denton M. Evolution: A Theory in crisis. London, 1985; Morris H.M. Scientific Creationism. San Diego, 1974)

Голованов Я. К. Королев. Факты и мифы. — М.: Наука. 1994, с. 760

Сарфати Джонатан. Несостоятельность теории эволюции. М.: Паломник, 2002

Хобринк Бен. Христианский взгляд на происхождение жизни. Киев, 1994, с. 78—80

Хобринк Бен. Христианский взгляд на происхождение жизни. Киев, 1994, с. 80

Моррис Генри. Библейские основания современной науки. СПб, 1995, с. 472—474

Бытие. 1, 26; 2, 7,18.

Бытие. 6, 1—2

Бытие. 6, 4

Гесиод. Труды и дни. Ст. 111

Гесиод. Труды и дни. Ст. 112—117

Гесиод. Труды и дни. Ст. 174—175

Платон. Государство. Платон. Собрание сочинений в 3-х тт. Т.3 (1). М., 1971, с. 514

См. напр. Сысоев Даниил. Представление о Боге в Христианстве и Исламе. Межрелигиозный диспут. [Интернет-ресурс: http://sysoev2.narod.ru/; http://www.idrp.ru/buy/show_item.php?cat=8118 ]

Платон. Тимей // Платон. Соч. в 3 тт., т 3, ч.I. М., 1971, с. 493

Платон. Парменид // Платон. Соч. в 3 тт., т 2. М., 1970, с. 477

Вспомним открывшееся Канту (1.2): любая вещь, попадающая в сферу нашего анализа, в обязательном порядке проходит сквозь строй всех логических категорий. Не может быть такого, чтобы одни подчинялись каким-то одним категориям из его общего списка, другие — другим.

Фейнман Р. Характеристика физических законов. Лекция 5. Различие прошлого и будущего. Библиотечка «Квант» № 62. М.: Наука, Изд. второе, исправленное, 1987

Фейнман Р. Характеристика физических законов. Лекция 5. Различие прошлого и будущего

.

Ваш комментарий о книге
Обратно в раздел философия

Список тегов:
волны истории 











 





Наверх

sitemap:
Все права на книги принадлежат их авторам. Если Вы автор той или иной книги и не желаете, чтобы книга была опубликована на этом сайте, сообщите нам.