Библиотека
Теология
Конфессии
Иностранные языки
Другие проекты
|
Ваш комментарий о книге
Карпенков С. Концепции современного естествознания: Учебник для вузов
10.5. Сохранение озонового слоя
Атмосфера Земли содержит одно- и двухатомные молекулы кислорода О и О2 и еще один аллотроп – озон О3 . Озон – светло-синий газ с характерным запахом – образуется в атмосфере при ультрафиолетовом облучении и грозовых разрядах. Он сконцентрирован в основном над тропосферой, в атмосфере и наблюдается от поверхности Земли до высот 80– 90 км. Воздух в стратосфере – безоблачной, сухой, холодной области – перемешивается очень медленно по вертикали и относительно быстро по горизонтали. Поэтому опасные вещества, однажды попавшие в стратосферу, остаются в ней на долгие годы и легко распространяются вокруг Земли, и тем самым загрязнение стратосферы приобретает глобальные масштабы.
Озон выполняет весьма важную роль естественного фильтра, поглощающего губительное для всего живого коротковолновое ультрафиолетовое излучение Солнца. Концентрация озона сравнительно небольшая. Если собрать озоновый слой в окружающую земной шар тонкую оболочку при нормальном атмосферном давлении, то толщина ее составит всего около 3 мм. Распределение озона в атмосфере зависит от сезона, активности Солнца, широты места, техногенного воздействия и т. п. Локальные распределения озона могут отличаться на порядок.
Разрушение озона осуществляется в результате цепной реакции, в которой одна примесная молекула может разрушить много тысяч молекул озона прежде, чем попадет в более плотные слои атмосферы и достигнет поверхности Земли вместе с осадками.
Сравнительно недавно схема образования озона в средних слоях атмосферы сводилось всего лишь к четырем химическим и фотохимическим реакциям с участием только кислородных одно- и многоатомных частиц (О, О2 и О3). К настоящему времени известно, что для описания динамического состояния стратосферы необходимо учесть не менее 150 химических реакций. Химический процесс начинается с поглощения молекулами кислорода О3 ультрафиолетового излучения. При таком поглощении разрываются химические связи, образуется озон О3 и атомы кислорода. При попадании моноксида азота NО в атмосферу начинается цепная реакция. Моноксид азота реагирует с озоном. Образуется диоксид азота NО2, который вступает в реакцию с атомами кислорода, регенерируя NО. Данные две реакции составляют по существу настоящий каталитический цикл, в котором NО и NО2 играют роль катализаторов. В таком цикле исчезают один атом кислорода и одна молекула озона, а соединения азота – NО и NО2 – полностью восстанавливаются (рис. 10.4). Предполагается, что рассмотренный каталитический цикл с участием оксидов азота – главный механизм разрушения озона, в результате которого возникают озоновые дыры.
Существуют два основных вида источников оксида азота в стратосфере. Первый из них – естественный – обусловливается бактериями: в природе оксиды азота образуются в основном в виде N3O при жизнедеятельности почвенных и морских бактерий. Такое относительно инертное соединение медленно поднимается в атмосфере, где в результате поглощения ультрафиолетового излучения образуются оксиды азота NО и NO2. Второй источник – различного рода газы искусственного происхождения, а также газы, образовавшиеся при ядерных взрывах.
С деятельностью человека связан еще один существенный источник загрязнения стратосферы – галогенпроизводные углерода CFCl3 и CF2Cl3 (хлорфторметаны), широко применяемые в качестве хладагентов и аэрозольных наполнителей. Данные соединения химически инертны, и какие-либо вредные воздействия их на живые организмы пока не обнаружены. Однако вследствие той же инертности они легко поднимаются вверх, достигая стратосферы, где возможен фотолиз под действием ультрафиолетового излучения. Хлорсодержащие продукты фотолиза Сl и СlО могут породить свой каталитический цикл, разрушающий озон подобно оксидам азота (рис. 10.5).
Предполагается, что данный каталитический цикл включает не две как это считалось раньше, а около 40 реакций с участием Сl, СlО, НСl, НОСl, HClNO2, и многих других соединений хлора. Большинство подобного рода реакций никогда ранее не изучалось в лаборатории. Только в последние десятилетия благодаря применению современных экспериментальных методов и технических средств появилась реальная возможность получать в лабораторных условиях многие реакционноспособные химические соединения и определять скорость их взаимодействия с многочисленными компонентами атмосферы.
Современные методы исследований аналитической химии, разработанные для обнаружения чрезвычайно малых количеств реакционноспособных молекул в лабораторных условиях, применяются для определения в естественной стратосфере таких веществ как О, ОН, С1 и С1О, концентрация которых составляет около триллионных долей. В то же время в результате исследования многих фотохимических и химических процессов, а также измерений концентрации многих примесей в стратосфере пока не обнаружены два вида соединений хлора: НОСl и ClONO2 принимающих участие в каталитическом цикле разрушения озона хлорфторметаном.
Ученые-естествоиспытатели своевременно подготовили необходимую и научно обоснованную базу для законодательных актов, ограничивающих применение хлорфторметанов. Для их замены в холодильных камерах, кондиционерах воздуха и т. п. химическая промышленность синтезирует вещества, которые легко разрушаются и не наносят вреда окружающей среде. Последовательное рациональное решение проблемы сохранения озонового слоя – один из характерных примеров научного подхода в анализе реального состояния атмосферы и поиске путей предотвращения потенциальной угрозы окружающей среде без введения необдуманных запретительных мер.
10.6. Водные ресурсы и проблемы их сохранения
Необходимые для жизнедеятельности всего живого водные ресурсы – это соленая вода океанов, морей и пресная вода озер, рек и подземных источников. Гигантское количество воды сосредоточено в ледниках, общий объем которых составляет около 30 млн кубометров. Существенная доля водяных паров образуется при естественном испарении поверхностных вод. Чрезвычайно быстрое испарение воды происходит при попадании вулканической лавы в море или океан. При этом образуются громадные облака горячего водяного пара (см. рис. 10.6).
Пресная вода в значительной степени подвержена воздействию человека при ее бытовом и промышленном потреблении. Исследования, проведенные в континентальных районах США, показали, что около 1% водоносных слоев в той ил иной степени загрязнены. Данный показатель загрязнения относительно не высок, но если учесть, что приблизительно половина населения США пользуется колодцами как источниками питьевой воды, то становится понятно, что даже такое загрязнение весьма значительно.
Наша страна, как никакая другая, богата водными ресурсами. Прежде всего это реки, многие из которых, к сожалению, несут непомерную нагрузку. Можно было бы говорить обо всех реках, но остановимся на одной из них – Волге. Проблемы Волги – это проблемы не только всех рек и всей России, но и всей планеты в целом.
По данным Института литосферы РАН, большая часть волжского бассейна находится в критическом состоянии. Ежегодно в Волгу поступает более 300 млн т минеральных веществ, 64 тыс. т фенола, более 100 тыс. т соединений железа, более 6 млн. т сульфата, свыше 10 млн т хлоридов и т. д. В бассейн Волги в 1990 г. было сброшено 23,3 км3 сточных вод. Из них совершенно неочищенных – 1,9, мало очищенных – 9,6, так называемых нормативно очищенных, а на самом деле тоже недостаточно очищенных – 1,6 км3. Основная масса загрязненных вод, как ни странно, поступает через сети коммунального хозяйства. Надолго промышленных отходов приходится меньше половины. Сокращение объема пресноводного стока с завершением строительства Нижнекамского и Куйбышевского водохранилищ и загрязнение воды привели к тому, что за последние 35 лет годовой лов рыбы в Волго-Каспийском регионе снизился в восемь раз. Судака стало меньше в 24, леща в 4,5, сельди – в 16 раз. Рыба гибнет в основном из-за того, что количество фенола, ионов меди, цинка, нефтепродуктов и пестицидов в волжской воде в последние годы превышает допустимые нормы в десятки и сотни раз. А с конца 70-х годов резко повысилось содержание азота, фосфора и органики.
Очевидно, если вода в Волге будет чистой, то и рыба в ней не переведется. Многие ли знают, что для рыб вода должна быть чище, чем питьевая? Воду, не пригодную для рыбы, люди в соответствии с нормами ГОСТа пить могут. И мы должны стремиться к тому, чтобы для нас установили те же нормы, что и для рыб.
Еще недавно радостно звучали слова популярной песни: «Волга, Волга, мать родная, отныне в памяти моей ты не река, а цепь сквозная каналов, шлюзов и морей». Теперь многие понимают, что превращение реки в цепь каналов оборачивается серьезными бедствиями. Каков же материальный ущерб, нанесенный Волге строительством ГЭС? Ежегодные потери оцениваются из-за недополучения продукции при затоплении более 1 млн гектаров сельскохозяйственных земель – в 16 млрд долл. и из-за потери рыбных запасов – в 4–6 млрд долл. Если учесть эти потери, то по себестоимости электроэнергии действующие ГЭС станут невыгодными по сравнению, например, даже с ТЭЦ. Но спустить воду невозможно – энергия нужна всем. Значит, надо искать способы реконструировать ГЭС таким образом, чтобы они приносили минимальный ущерб.
Подвергаются загрязнению и подземные воды. Основной источник загрязнения – отходы. Применяемые в течение длительного времени способы захоронения бытовых и промышленных отходов основывались на том, что миграция отходов маловероятна и что со временем содержащиеся в них соединения окисляются, гидролизуются или перерабатываются бактериями в безвредные продукты. Однако результаты исследований показали, что некоторые виды отходов слабо разлагаются и способны мигрировать, а часть их перерабатываются бактериями не в безвредные, а в токсичные вещества. Загрязняющие вещества от различных источников могут распространяться в поверхностных слоях земли на большие расстояния от источников загрязнения (см. рис. 10.7) и проникать в водоносные пласты.
Восстановление сильно загрязненных водоносных пластов требует весьма внушительных финансовых вложений. Так, стоимость работ по локализации загрязнений, проводимых в Скалистых горах шт. Колорадо, составляет около 100 млн долл., а полное устранение загрязнений в данной местности стоит примерно 1 млрд долл. Такая чудовищная стоимость восстановительных работ непременно должна способствовать обдуманному и научно-обоснованному подходу в решении весьма непростой проблемы захоронения отходов. Вынужденное захоронение всех видов отходов в грунте требует предварительных и сопутствующих физических, химических и биологических исследований, результаты которых позволят представить реальную картину миграции составляющих отходы соединений, а также их процесс разложения. Только при таком подходе ненужные и вредные отходы могут нанести минимальный ущерб окружающей среде. При достаточно глубоком изучении данной проблемы различные отходы могут использоваться как вторичное сырье, т. е. оказаться полезными.
За последние десятилетия резко возрос объем пластиковых отходов, которыми засоряются не только огромные площади суши, но и моря, и океаны. Пластиковые отходы в конце концов разрушаются, но очень медленно – некоторые из них в течение нескольких десятков лет. Но все же усилиями химиков выход найден – синтезированы с особой структурой и свойствами пластики, отходы от которых наносят минимальный ущерб окружающей среде. В такие пластики внедряются светочувствительные молекулярные группы, способные поглощать солнечное излучение, приводящее к расщеплению полимера.
Можно выделить несколько способов сохранения водных ресурсов:
– оптимальная комбинация химической и биологической чистки сточных вод;
– применение дополнительных средств очистки сточных вод, содержащих особо стойкие вещества;
– внедрение процесса озонирования;
– окисление загрязняющих веществ при высокой температуре и высоком давлении;
– высокотемпературное сжигание отходов и обработка их адсорбентами и ионообменными смолами;
– циклическое применение воды при теплоотводе от различных механизмов и агрегатов;
– возвращение в производственный цикл ценных веществ, например, металлов, вызывающих загрязнение почвы и воды;
– создание быстроразлагающихся заменителей пестицидов, широко применяемые как средство борьбы с болезнями и вредителями растений.
Успешное решение проблемы сохранения окружающей среды зависит не только от ученых, специально занимающихся данной проблемой, но во многом и от всех людей, бережно относящихся к природе, в том числе и к водным ресурсам.
10.7. Потребление энергии и среда нашего обитания
Последнее столетие непременно войдет в историю как эпоха стремительного роста городов, количества грузовых и легковых автомобилей, интенсивного строительства новых дорог и расширения автострад, освоения воздушного, а затем и космического пространств, создания творящей чудеса микроэлектронной и компьютерной техники и многого другого, чего не мог себе представить самый образованный человек не такого уж далекого прошлого – человек времен Петра Первого. Вместе с тем это была эпоха дешевой энергии. Многие из нас помнят, как не так давно воздвигали громадные дома, не заботясь о их теплоизоляции, как строили гиганты-заводы без надлежащего учета экономии энергии и т. д.
Стало привычным пользоваться благами энергии: нажимая кнопку, мы получаем свет, звук, телевизионное изображение, тепло, холод и кондиционированный воздух; поворачивая кран, мы имеем холодную и горячую воду, не осознавая того, что на это расходуется не так уж мало энергии: достаточно представить, как трудно поднять всего лишь одно ведро воды хотя бы на второй этаж, не говоря о более высоких. Нажимая кнопку и поворачивая кран мы имеем и другую сторону медали: затопленные большие площади полезных земель, затопленные села и даже города, громадные горы отходов, кислотные дожди, загрязнение природной среды нефтью и отходами нефтяной и газовой промышленности, аэрозоли в атмосфере, углекислый газ и смог, радиоактивные отходы и т. п.
Описание мрачной картины последствий производства энергии можно было бы продолжить. Но и без того понятно: сберегая энергию, мы сохраняем природную среду нашего обитания. Несомненно, бережное отношение к энергии касается не только семейного бюджета – оно непосредственно связано с дальнейшим развитием цивилизации. Такое отношение должно прививаться каждому еще в раннем возрасте. Им должны руководствоваться не только профессионалы-экологи и энергетики, но буквально все люди вне зависимости от профессии и занятий.
Проблемы производства энергии и ее сбережения не новы: ими занимались всегда и в первую очередь, конечно, ученые. Однако только сравнительно недавно, начиная с 1974г., на государственном уровне начали осознавать, что эпоха дешевой энергии завершается. Напомним, что в 1974 г. после введения арабскими странами эмбарго на продажу важнейшего энергоносителя – нефти последовало шестикратное увеличение цен на нее. В 1973 г. США платили всего 2 долл. за баррель иностранной нефти (1 баррель равен 158,99 л). А 1981 г. принес еще один резкий подъем цены: один баррель нефти уже стоил 37 долл. Может показаться, что такое повышение цены имеет политическую окраску, с чем нельзя не согласиться. Но в данном случае за политикой кроется реальная экономика: США, многие страны Западной Европы и Японии потребляют гораздо больше энергии, чем получают из собственных источников, и сокращение поставки энергоносителей повлекло бы остановку многих промышленных предприятий.
Приведенный пример нельзя рассматривать как крупномасштабный энергетический кризис. Это всего лишь результат географического и политического раздела производителей энергоносителей и их потребителей. Но данный пример заставляет не только задуматься над проблемами экономного производства энергии и экономном ее потреблении, но и искать новые способы получения энергии, которые приносили бы минимальный ущерб окружающей среде. Только при рациональном применении ископаемых энергоносителей (нефти, газа, угля) и разумном сочетании их с нетрадиционными источниками (источниками энергии приливов ветра, Солнца, геотермального тепла и др.) можно надолго сохранить хрупкое равновесие в природе – среде нашего обитания.
Сложная проблема производства энергии и сохранения окружающей среды волнует всех людей и в первую очередь специалистов и ученых, которые предлагают разные способы ее решения. Один из способов предложили ученые США. В штате Нью-Йорк организована экспериментальная ферма, на которой выращивают гибридную иву, специально выведенную для того, чтобы служить топливом для электростанций. «Энергетическая» ива не похожа ни на одну из естественных разновидностей, это плотный куст с гибкими ветками, длина которых за год увеличивается почти на 3,5 м. Большая скорость роста – основная особенность гибрида. За год ивовый лес производит в 5–10 раз больше древесины, чем любой природный лес. Собирать урожай прутьев можно каждые три года на протяжении 20 лет. Для сжигания ветки рубят на куски длиной 5 см. Хотя такое топливо обходится не дешевле угля (с учетом того, что на ТЭЦ приходится заменять угольные топки новыми, специально сконструированными), зато дым от ивовых дров гораздо менее токсичен. Он содержит меньше окислов серы и азота. Кроме того, если при сжигании нефти, угля и газа выпускается в атмосферу углекислый газ, который был давно похоронен в горных пластах и исключен из атмосферы, то сжигание дров высвобождает то количество углекислого газа, которое растения поглотили из атмосферы за прошлые три года их роста и снова поглотят к новому урожаю. Поэтому сжигание их не увеличивает парниковый эффект. В Западной Европе такие леса уже занимают около 20 тыс. гектаров. В США имеется 80 млн. га. брошенной земли, так что есть где развернуть энергетическое лесоводство.
Можно привести и другие примеры оригинальных способов производства энергии, способствующих сохранению среды нашего обитания. Однако любой способ в той или иной мере сопряжен со вторжением в природу. Поэтому важно не только произвести с минимальным ущербом для природы энергию, но и рационально ее потреблять. Только в этом случае, производя и потребляя энергию, мы проявим не на словах, а на деле бережное отношение к окружающей среде.
10.8. Радиоактивное воздействие на биосферу
Общие сведения
В текущем столетии в связи с активной деятельностью человека, связанной с производством ядерного оружия и бурным развитием атомной энергетики, появился новый вид воздействия на биосферу – радиоактивный. Если раньше радиоактивное воздействие можно было считать несущественным: радиоактивные источники были спрятаны природой в относительно недоступных местах для живого мира, – то в последнее десятилетие в связи с добычей и обогащением ядерных материалов в крупных масштабах радиоактивное воздействие на биосферу стало представлять серьезную экологическую опасность.
Слова «радиоактивное излучение» «радиоактивность» и «облучение» вошли в жизнь послевоенных поколений и до наших дней неразрывно связаны с первым и увы! кошмарным применением внутриядерной энергии – атомными бомбардировками Хиросимы и Нагасаки. Хотя исход Второй мировой войны был предрешен и японский генералитет уже обсуждал порядок капитуляции перед союзниками, Соединенные Штаты совершили варварский акт, продемонстрировав чудовищную мощь ядерного оружия.
При взрывах атомных бомб более 100 тыс. японцев погибли практически мгновенно, пораженные световой и ударными волнами. Десятки тысяч выживших в момент взрыва подверглись действию проникающих излучений и скончались в течение нескольких дней и недель от острой лучевой болезни, вызванною переоблучением и отягощенной травмами и обширными ожогами кожи. На этом не закончился список тех, кто погиб от облучения. Точные сведения о числе жертв атомных бомбардировок Хиросимы и Нагасаки не опубликованы до сих пор. В статьях американских военных специалистов эти данные занижены по причинам, среди которых в первую очередь следует упомянуть политические мотивы. Наиболее полную информацию имеют прогрессивные японские организации, проводившие специальные исследования. По их данным, к концу 1946 г в результате взрывов атомных бомб погибло около 160 тыс. жителей Хиросимы и 70 тыс. жителей Нагасаки. В течение последующих 30 лет (1947–1976 гг.) от лучевой болезни скончалось еще около 90 тыс. человек. По прогнозам в дальнейшем жертвами отдаленных последствий переоблучения окажутся еще 360 тыс. человек.
Вблизи хиросимского Музея мира на бывшем огромном пустыре, а ныне на краю большого парка, прямо под точкой взрыва американской атомной бомбы установлен черный каменный саркофаг с книгой записей имен жертв атомной бомбардировки. Прошло более 50 лет, но ежедневно в ней появляются все новые имена скончавшихся из-за последствий облучения. Сначала умирали жители Хиросимы, находившиеся в ней в августе – сентябре 1945 г., потом их дети, а теперь дети их детей. По данным профессора Джозефа Ротблата, английского специалиста по радиационной биологии, в Хиросиме за пять лет после взрыва бомбы умерло втрое больше людей, чем при взрыве. Они погибли от совместного действия ожогов, травм и облучения.
Полностью разрушенную первой атомной бомбой Хиросиму начали возрождать через несколько лет после взрыва. Спустя 10 лет был построен город прежней величины.
Взрыв одного из четырех блоков Чернобыльской АЭС в ночь на 26 апреля 1986 г. не разрушил ни одного жилого дома и даже не остановил сразу работу самой АЭС. Но через 10 лет после этой аварии опустошенные эвакуацией города и деревни прилегающих к Чернобылю районов Украины и Белоруссии по-прежнему остаются пустыми. Жить на этой территории, превышающей 1000 км2 и сильно загрязненной радионуклидами, будет нельзя еще 300–400 лет. Здесь будут работать лишь экологи и генетики, изучая влияние разных уровней хронической радиации на растения и животных. По подсчетам экспертов «цена» чернобыльской аварии за 10 лет составила около 200 млрд долл. Но это лишь расходы и потери первого десятилетия. Прямой эффект чернобыльской аварии был крайне тяжелым. Десятки людей погибли от острой лучевой болезни. Многие жители были переоблучены и их здоровью нанесен существенный ущерб.
В России, на Украине, в Восточной и Западной Европе, США в последние 10 лет не было начато строительство ни одной новой АЭС. Однако продолжали достраивать реакторы, которые были уже близки к завершению. Естественно, что их проекты модифицировались. В СССР в 1989–1990 гг. из-за усилившейся антиядерной пропаганды остановилось и такое строительство, хотя это означало замораживание уже задействованных огромных инвестиций. После распада СССР Россия возобновила работы по вводу в действие реакторов, строительство которых было почти завершено к 1986 г. В 1993 г. был введен в действие четвертый реактор ВВЭР-1000 на Балаклавской АЭС. Возобновились работы по завершению строительства третьего реактора ВВЭР-1000 на Калининской АЭС и пятого реактора РБМК-100 на Курской АЭС.
Армения, лишенная всех источников органического топлива, решила реактивировать Армянскую АЭС, закрытую после землетрясения в 1988 г. Серьезное преобразование этой АЭС, состоящей из двух блоков ВВЭР-440, финансировалось армянской диаспорой. Введение одного из этих реакторов в эксплуатацию в декабре 1995 г. отмечалось как национальный праздник. Ослабли антиядерные настроения и в независимой Украине.
В нашем лексиконе появились термины «острая лучевая болезнь», «отдаленные последствия облучения», тревожно звучащее слово «радиация». Раньше эти термины применялись преимущественно в узком круге специалистов, занимающихся разработкой способов использования атомной энергии в первую очередь для мирных целей. Вряд ли найдется человек, который не слыхал бы об успешном применении облучения в терапии опухолей, при стерилизации продуктов питания и медицинских препаратов, для предпосевной стимуляции семян и в других отраслях человеческой деятельности вплоть до криминалистики и искусствоведения.
И все-таки у многих, если не у большинства, при слове «радиация» возникает тревожное состояние, иногда называемое атомным синдромом, означающим болезненное состояние психики. Авария на ЧАЭС – не только разрушение блока, но и взрыв (без преувеличения) всеобщего интереса к проблеме действия излучения на живые организмы, в первую очередь на человека, а также к тому процессу, который называется облучением. В печати, по радио, на телевидении замелькали ранее применявшиеся только в специальной литературе термины – «дозиметрия» и «радиобиология», специальные единицы – рентгены, рады, бэры, а иногда даже такие экзотические, как грэй, зиверт. Большой выброс радиоактивных веществ из аварийного блока и в связи с этим возникшая необходимость введения радиометрического контроля в районах, прилегающих к 30-километровой эвакуированной зоне, вовлекла в круг практической дозиметрии много лиц, ранее не соприкасавшихся с проблемами радиоактивности измерений. Незнание количественных критериев радиационной опасности, а также неумелое применение средств защиты привели к ряду ошибочных действий. По этой же причине серьезными ошибками пестрят многочисленные послеаварийные сообщения.
Один из важных уроков из аварии в Чернобыле состоит в том, что изучение основ дозиметрии ионизирующих излучений и радиационной биологии – неотъемлемый элемент современной цивилизации и культуры. Нам известны многие виды излучений, которые могут взаимодействовать с облучаемой средой, не обязательно вызывая ионизирующее действие. Одно из них всем хорошо знакомо – вспомним последствия длительного пребывания летом на ярком солнце. Ожог (иногда второй степени!) – следствие переоблучения кожи в результате воздействия инфракрасного излучения на клетки эпидермиса (верхнего слоя кожи), тогда как загар – воздействие более глубоко проникающего ультрафиолетового излучения на пигмент в составе подкожной клетчатки.
Отмеченное в последние годы ослабление слуха у подростков – следствие акустического переоблучения различного рода аудиотехникой. Причина выявленной в годы Второй мировой войны анемии у операторов мощных радиолокаторов – воздействие чрезвычайно больших доз сверхвысокочастотного электромагнитного излучения. Одна из существующих в современной биофизике гипотез связывает акселерацию людей в послевоенные годы с переоблучением населения Земли вездесущими радиоволнами.
Не множа число таких примеров, уточним основную цель – количественно обосновать безопасные и допустимые уровни воздействия на живые организмы и оценить степень опасности облучения человека.
Взаимодействие излучения с веществом
Первая характеристика из используемых в практической дозиметрии, можно сказать, «лежит на поверхности» – это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с проникающим рентгеновским излучением, распространяющимся в воздухе. Поэтому в качестве количественной меры излучения многие годы применяли результат измерения ионизации воздуха вблизи рентгеновских трубок и аппаратов. Единицей таких измерений условились считать количество пар ионов, которые излучение образует в 1 см3 сухого воздуха, находящегося при атмосферном давлении. Позднее было установлено, что такой единице экспозиционной дозы, названной рентгеном, соответствует 2,08·109 пар ионов, т. е. примерно 2 млрд пар ионов в 1 см3 воздуха. Таким образом, можно сказать, что экспозиционная доза – количественная характеристика поля ионизирующего излучения, основанная на величине ионизации сухого воздуха при атмосферном давлении. Единицей измерения экспозиционной дозы является рентген (Р), 1P = 1 · 109 пар ионов/см3 воздуха.
Полезно запомнить удобное правило, часто применяемое в практической дозиметрии: доза 1P накапливается за 1 ч на расстоянии 1 м от источника радия массой 1 г, т. е. активностью примерно 1 Кюри (Ки).
В качестве меры глубинных доз и радиационного воздействия проникающих излучений было предложено определять энергию, поглощенную облучаемым веществом. Поглощенная доза – количество энергии, поглощенной единицей массы облучаемого вещества. Единицей поглощенной дозы является рад (рад – аббревиатура от английских слов radiation absorb dose, т. е. поглощенная доза излучения); 1 рад= 100 эрг/г. В системе СИ новой единицей поглощенной дозы является грэй (Гр) (эта непривычная, на практике еще мало употребляемая единица названа в честь английского физика Л. Грэя); 1 Гр= 100 рад. Для мягких тканей в поле рентгеновского или гамма-излучения поглощенная доза 1 рад примерно соответствует экспозиции 1P, т. е. 1P 1 рад (точно – 0,88 рад).
Из приведенных определений однозначно следует, что поглощенная доза – универсальное понятие, характеризующее результат взаимодействия поля ионизирующего излучения и среды, на которую оно воздействует, т. е. облучения. Между поглощенной дозой и радиационным эффектом существует прямая зависимость: чем больше поглощенная доза, тем больше радиационный эффект.
К сожалению, действие ионизирующих излучений на живой организм оказалось сложнее, чем последствия облучения сравнительно простых неживых веществ. Выяснилось, что у значительной части физиков, в течение ряда лет проводивших опыты на циклотронах, было обнаружено профессиональное помутнение хрусталика. Эти лучевые катаракты развились у них в условиях умеренных поглощенных доз, не превышавших допустимых значений. Изучение таких отдаленных последствий облучения организма привело к заключению, что радиобиологический эффект зависит не только от поглощенной дозы, т. е. энергии, переданной облучаемому веществу, но и от других факторов. При одной и той же поглощенной дозе радиобиологический эффект тем выше, чем плотнее ионизация, создаваемая изучением. Для количественной оценки такого влияния вводится понятие эквивалентной дозы, которая равна поглощенной дозе, умноженной на коэффициент качества, определяемый отношением поглощенной дозы эталонного измерения к дозе рассматриваемого излучения, вызывающей тот же радиобиологический эффект. Единицей измерения эквивалентной дозы является биологический эквивалент рада – бэр. В системе СИ единица эквивалентной дозы– зиверт (Зв), названный в честь известного шведского радиолога Г.Р. Зиверта: 1 зв = 100 бэр.
Анализ несчастных случаев позволил установить численное значение смертельной дозы гамма-излучения. Она оказалась равной 600 ± 100 Р.
Дозиметрические и радиобиологические исследования показали, что ни в одном из известных случаев вредные последствия облучения не проявились при дозах менее 100 Р кратковременного, т. е. «острого», облучения и 1000 Р облучения, растянутого на десятки лет.
Каковы же опасные и неопасные дозы облучения? При дозах облучения более 25 бэр никаких изменений в органах и тканях организма человека не наблюдается. Незначительные кратковременные изменения состава крови возникают только при дозе облучения 50 бэр.
Во всех случаях воздействия ионизирующих излучений на ткань в основе первичных изменений, возникающих в клетках живого организма, лежит передача энергии в результате процессов ионизации и возбуждения атомов ткани. При дозах облучения, вызывающих глубокие поражения или даже гибель организма (например, единовременно 600 рад для человека), относительное количество образующихся ионов очень невелико. Этой дозе соответствует примерно 1015 ионов/см3 ткани, что в пересчете на ионизацию молекул воды составляет всего лишь одну ионизированную молекулу воды на 10 млн. Таким образом, непосредственная прямая ионизация (без учета вторичных эффектов) не может объяснить повреждающего действия излучения.
Количество энергии, соответствующее такой дозе, по своему тепловому эффекту ничтожно мало: при облучении человека весом 70 кг дозе 600 рад соответствует выделение 60 малых калорий, что равносильно приему внутрь одной ложки теплой воды. Следовательно, биологическое действие ионизирующего излучения невозможно свести только к изменениям температуры, как это имеет место, например, при взаимодействии живой ткани с УКВ- и СВЧ-волнами.
Если при вдыхании, заглатывании, а также через повреждения кожного покрова источник излучения попадает внутрь организма, то возникает внутреннее облучение во много раз более опасным, чем внешнее, при одних и тех же количествах радионуклидов.
Патологическое действие облучения на организм в значительной мере зависит от места локализации радиоактивного вещества. Например, главная опасность радия заключается в том, что он откладывается в костях и излучает альфа-частицы. Вызывая очень сильную ионизацию, альфа-частицы повреждают как кость, так и особенно чувствительные к излучению клетки кроветворных тканей, вызывая тяжелые заболевания крови и образование злокачественных опухолей. Пыль, содержащая радиоактивные частицы, приводила к образованию радиоактивных отложений в легких и способствовала развитию рака. Средний период развития рака в этом случае составлял около 17 лет, за которые ткани легких рудокопов получали дозу не менее 1000 бэр.
Из всех путей поступления радионуклидов в организм наиболее опасно вдыхание загрязненного воздуха. Во-первых, потому, что человек, занятый работой средней тяжести, потребляет за рабочий день большое количество воздуха (около 20 м3), во-вторых, радиоактивное вещество, поступающее таким путем в организм человека, исключительно быстро усваивается.
Защита от облучения
Познакомимся с мерами защиты от облучения. При одном и том же потоке излучения, активности или концентрации радионуклидов защита населения на местности должна быть на порядок более эффективной, чем персонала на производстве. Различают три возможных способа защиты – временем, расстоянием и экранировкой. Защита временем – это ограничение продолжительности работы в поле излучения. Действительно, в результате предварительной радиационной разведки (дозиметристы всегда идут впереди) уточняется картограмма гамма-поля на всем рабочем пространстве. Зная, что и где нужно сделать, дозиметрист задает исполнителям допустимое время для проведения операции.
Второй способ защиты от гамма-излучения столь же прост и нагляден: защита расстоянием. Общеизвестно, что излучение точечного или локализованного источника распространяется во все стороны равномерно, т. е. является изотропным. Отсюда следует, что интенсивность излучения уменьшается с увеличением расстояния от источника по закону обратного квадрата. Следовательно, при увеличении расстояния до источника излучения в 2 раза интенсивность его уменьшается в 4 раза и т. д. Если необходимо снять картограмму гамма-поля с очень высокой мощностью дозы, это делают с максимальным удалением от такого участка.
Третий способ – защита экранированием или поглощением – основан на использовании процессов взаимодействия фотонов с веществом. Защитные свойства материалов определяются коэффициентом ослабления излучения для узкого пучка гамма-излучения. Обычно указывают главные параметры материалов защиты – слой половинного или десятикратного ослабления. Для ориентировки полезно запомнить, что слои половинного ослабления фотонов с энергией 1 МэВ составляет 1,3 см свинца или 13 см бетона. Защитная способность других веществ больше или меньше характерной для этих двух «эталонных» материалов в такой же степени, во сколько раз отличаются их плотности от плотности свинца или бетона.
Жизненно необходимая радиация
Привычка разделять все воздействующие на организм явления и вещества на вредные для него и полезные – всего лишь широко распространенное заблуждение. Ведь давно известно, как вредна, например, передозировка лекарств или даже витаминов и как необходимы бывают организму микродозы яда, например змеиного. Считавшиеся всегда только вредными вещества или эффекты могут быть в определенных дозах весьма полезными. С атомной радиацией человек поначалу столкнулся при очень больших дозах ее воздействия и не мог не убедиться в губительности этой радиации для всего живого. До сих пор не до конца изучены ее последствия, но широко распространено мнение, что она всегда вредна и что вред этот снижается с уменьшением дозы облучения.
В середине XX в. был обнаружен природный радиоактивный фон, влиявший в течение миллионов лет на жизнь нашей планеты. Многие специалисты сочли его уровень нижним пределом опасной радиации, отметив, однако, что даже один квант высокой энергии убивает клетку при прямом попадании. Эксперименты показали, что большие и малые дозы атомной радиации действуют на организм принципиально по-разному. Первые поражают множество клеток и серьезно ослабляют организм, тогда как вторые губят только отдельные клетки, а остальным дают стимул для их последующего развития.
В молекулах клеток (в ДНК, РНК, белках) при воздействии атомной радиации происходят одновременно два процесса – ионизация и возбуждение. Именно ионизации обязана радиация своим поражающим живые организмы действием. Процессом возбуждения до недавних пор пренебрегали, считая его побочным, вторичным, тогда как на самом деле он чрезвычайно важен. Вызванное малыми дозами атомной радиации (на уровне природного фона) возбуждение молекул способствует развитию клеток и всего организма в целом. Оно удлиняет сроки жизни, усиливает иммунитет, повышает всхожесть семян, увеличивает рост растений и т. д.
Положительный эффект малых доз радиации подтвержден многими экспериментами на растениях и животных – от насекомых до млекопитающих. И ничего в этом удивительного нет, поскольку жизнь на Земле возникла, развивалась и существует ныне в условиях постоянной атомной радиации.
Все знают, что чрезмерное повышение радиоактивного фона наносит немалый вред всему живому, и принятие всех возможных мер к тому, чтобы снизить его до нуля, кажется вполне естественным. Но проведенные в последние годы опыты с растениями и животными показали, что изоляция организма от естественной радиации вызывает в нем замедление самых фундаментальных жизненных процессов.
Земная колыбель человечества всегда была радиоактивной, и биологические объекты, развиваясь в поле ионизирующих излучений, не могли к этому не приспособиться. В этом отношении показательны опыты радиобиологов по выращиванию растений внутри камер, изготовленных из радиационно чистых материалов, которые практически не содержат в своем составе естественных радионуклидов. Оказалось, что в таких условиях побеги появляются позже, развитие растений замедлено, а урожай существенно ниже, чем в условиях естественного радиационного фона.
Нарушение естественного состояния окружающей среды, ведущее к деградации всего живого и представляющее угрозу здоровью человека – явление не новое: оно прослеживается с древнейших времен и стало заметно проявляться на самой начальной стадии урбанизации – с появлением небольших городов. Население земного шара постоянно растет, продолжается стремительный рост городов – появляются города-гиганты – мегаполисы. Потребление различных материальных ресурсов, товаров и энергии на душу населения непрерывно увеличивается. Рост населения, урбанизация, массовое производство промышленной и сельскохозяйственной продукции – все это неизбежно ведет к активному вторжению человека в окружающую среду. И в этой связи ее защита в настоящее время, как никогда, чрезвычайно важна. Уже сейчас некоторые граждане разных стран вне зависимости от их профессиональной деятельности и политических воззрений заявляют о готовности покупать более дорогие, но экологически чистые продукты, платить более высокие подоходные налоги ради оздоровления среды обитания.
Вне всяких сомнений защита окружающей среды должна быть основана на естественно-научных, профессиональных знаниях, позволяющих вполне определить:
– потенциально опасные вещества содержатся в воздухе, воде, почве и пище;
– причину их появления;
– способы полной или частичной защиты окружающей среды;
– степень опасности при длительном воздействии вредных веществ на живые организмы.
Успешное решение данной сложной задачи возможно только с применением чувствительных приборов и современных методов определения концентрации опасных веществ. Для выявления источников загрязнения и их анализа нужна совместная работа химиков-аналитиков, метеорологов, океанографов, вулканологов, климатологов, биологов и гидрологов. Задача специалистов заключается не только в выявлении вредных веществ, но и в разработке способов предотвращения их появления.
Вопрос о допустимой длительности воздействия вредных веществ на живой организм решают врачи и другие специалисты. Они собирают информацию и готовят данные о степени риска, обусловленного наличием токсических веществ, например, свинца в воздухе, хлороформа в питьевой воде, радиоактивного стронция в молоке, бензола в атмосфере производственных помещений и формальдегида в жилых домах и т. п. При этом важна объективная оценка риска и издержек, связанных с наличием опасных веществ. Любое решение, в том числе и политическое, тех или иных вопросов сохранения окружающей среды должно основываться на квалифицированной, объективной и всесторонней естественно-научной экспертизе.
Иногда некоторые средства массовой информации, общественные организации и даже правительственные органы ставят, к сожалению, знак равенства между обнаруженным вредным веществом и реальной его опасностью. Такое отождествление вытекает из простого заблуждения: вещество, обладающее выраженной токсичностью при определенной концентрации, токсично всегда. Можно привести много примеров вредных веществ, показывающих, что это далеко не так. Один из них – монооксид углерода. Данный обычный компонент атмосферы действительно опасен для здоровья человека только при концентрациях, больших 1000 млн долей. Принято считать, что продолжительное воздействие моноксида углерода в концентрациях, превышающих только 10 млн долей, отрицательно сказывается на здоровье человека.
Мы живем в окружающей среде, всегда содержащей легко обнаруживаемую концентрацию монооксида углерода – около 1 млн долей. А это означает, что нет необходимости в полном устранении моноксида углерода из атмосферы! Важно знать при этом научно установленную максимальную концентрацию вредных веществ, которая безопасна без применения специальных мер защиты, т. е. нужно определить их предельно допустимую концентрацию. Лишена всякого здравого смысла защита окружающей среды, ориентированная на нулевой риск, означающий достижение абсолютной безопасности при полном уничтожении опасных веществ. В приведенном примере с моноксидом углерода достижение нулевого риска означает полное, до последней молекулы, удаление данного газа из атмосферы. Решение такой задачи потребовало бы громадных капиталовложений без ощутимой пользы и привела бы к нежелательным последствиям в биосфере. Вполне оправдано, целесообразно и полезно вкладывать финансовые ресурсы на организацию всесторонних долговременных естественно-научных исследований окружающей среды и на разработку эффективных методов измерений, производимых с помощью приборов, обладающих чрезвычайно высокой чувствительностью, которая необходима для определения небольшой концентрации в сложной смеси, содержащей много безвредных, а среди них и вредных веществ.
Легко реагирующие соединения, находящиеся в атмосфере, трудно доставить в сохранившемся составе для анализа в лабораторию. В этой связи возникает необходимость в дистанционном обнаружении и определении химического состава и структуры таких соединений в местах их образования. Многочисленные экспериментальные исследования показывают, что современный метод инфракрасной спектроскопии позволяет анализировать состав воздуха над городом на расстоянии около одного километра. С помощью данного метода удается установить содержание формальдегида, муравьиной и азотной кислот, пероксиацетилнитрата и озона при одновременном их наличии в воздухе в концентрациях, составляющих миллиардные доли. Такая концентрация любых названных веществ слишком мала, чтобы оказать ощутимое вредное воздействие на здорового человека. В то же время она достаточна для заметного влияния на химические процессы в атмосфере. Современные сканирующие лазерные устройства успешно применяются для определения концентрации диоксида серы (сернистого газа), составляющей миллионные доли, в дыме электростанций, работающих на угле. Полупроводниковые лазеры весьма удобны для анализа выхлопных газов автомобилей.
Испытания на животных показали, что только один из 22 структурных изомеров тетрахлордиоксина в тысячу раз токсичнее всех остальных. Данный пример подчеркивает важность аналитических методов, которые позволяют не только установить концентрацию загрязнителя, но и идентифицировать его химический состав и структуру.
Контрольные вопросы
1. В чем заключаются гипотезы, предложенные Кювье и Жоффруа?
2. Как могли повлиять глобальные катастрофы на эволюцию жизни на Земле?
3. Какие факторы определяют развитие экологической катастрофы?
4. Какова роль научного управления при переходе к ноосфере?
5. Назовите основные признаки изменения климатических условий.
6. Почему изменяется уровень Мирового океана?
7. Какие изменения произойдут в биосфере при глобальном потеплении?
8. В чем проявляется парниковый эффект?
9. Какова роль лесных массивов в предотвращении глобального потепления?
10. Как возникают кислотные осадки?
11. Как можно предотвратить кислотные осадки?
12. Назовите основные механизмы разрушения озонового слоя.
13. Каков химический состав озона?
14. Можно ли предотвратить разрушение озонового слоя?
15. Охарактеризуйте на примере бассейна Волги экологическое состояние водных ресурсов.
16. Как происходит миграция загрязняющих веществ в окружающей среде?
17. Охарактеризуйте последствия атомной бомбардировки Хиросимы и Нагосаки.
18. Каковы последствия аварии Чернобыльской АЭС?
19. В чем проявляется действие радиоактивного излучения на живые организмы?
20. Каковы опасные и неопасные дозы облучения?
21. Что такое внутреннее облучение?
22. На чем основана защита от облучения?
23. Оказывает ли радиация полезное действие на живые организмы?
24. Как производят захоронение радиоактивных отходов?
25. В чем заключается влияние производства энергии на окружающую среду?
26. Существует ли связь между потреблением энергии и сохранением окружающей среды?
27. Какие естественно-научные проблемы необходимо решать при защите окружающей среды?
28. Чем определяется реальная опасность вредных веществ?
29. Что такое нулевой риск?
30. В чем заключаются профессиональные меры защиты окружающей среды?
.
Ваш комментарий о книге Обратно в раздел Наука
|
|