Библиотека
Теология
Конфессии
Иностранные языки
Другие проекты
|
Ваш комментарий о книге
Игнатова В. Концепции современного естествознания: Учебное пособие
2.2. ЭВОЛЮЦИЯ ЕСТЕСТВОЗНАНИЯ
Цели и задачи раздела:
- Показать естествознание как динамично развивающуюся область науки.
- Познакомить с особенностями развития естествознания в разные культурно-исторические эпохи.
- Представить панораму доклассического, классического и неклассического естествознания.
- Отработать понятия: интервал, квант, спин, волновая функция, плотность вероятности, оператор, соотношения неопределенности, принцип относительности, принцип дополнительности и др.
План
- Доклассический период развития науки
- Научные программы античности
- Средневековая наука
- Классическая наука
- Естествознание в «Новое время»
- Естествознание XIX века
- Кризис классической науки
- Неклассическая наука
- Релятивистская картина мира
- Квантово-полевая картина мира
- Строение материи и физика элементарных частиц
- Затруднения неклассической науки
- Постнеклассическая наука
2.2.1 ДОКЛАССИЧЕСКИЙ ПЕРИОД РАЗВИТИЯ НАУКИ
Доклассический период развития естествознания растянулся более чем на двадцать столетий. Можно выделить два очень важных этапа: античность и средние века. Исследования ученых этих времен стали предтечей становления классической науки.
1. Научные программы античности
Наука в современном понимании этого слова зародилась в поздней античности. Ее колыбелью стала Древняя Греция. Уже в Y - I в. до н.э. у греков достаточно хорошо была развиты математика, механика, астрономия. Сложившаяся социокультурная ситуация способствовала становлению нового мировоззрения - античной натурфилософии и создала условия для возникновения системы доказательных знаний, в основе которой лежит рациональное обоснование. Сформированный в античности аппарат логического рационального мышления представлял собой определенный алгоритм производства доказательных знаний. Являясь принципиально новым по сравнению с мифологией подходом к постижению мира, натурфилософия подводила к пониманию, что истина - не продукт догматической веры, а логически обоснованный результат созерцания и осмысления окружающей действительности. В ее недрах зародились традиции современного «европейского» научного мышления.
В отличие от мифологии и религии натурфилософия пыталась решать мировоззренческие вопросы средствами разума, опирающегося на чувственное наблюдение, интуицию, эмпирическое знание, систему понятий и суждений, связанных друг с другом по определенным логическим законам. Античные философы создали логику и диалектику, которые в Древней Греции стали важнейшими методами познания действительности. В те времена считалось, что именно созерцание и размышление, отвлечение от мирской суеты, обращение к самому себе и своей интуиции позволяет приобщиться к вечному и глубже познать законы Мироздания. Ее вниманием пользуются преимущественно вопросы отношения человека к превосходящим силам природы, понимание мира, строения материи, живых организмов и самого человека. Глубина их представлений поражает. И современная нам наука, вооруженная тончайшей измерительной техникой и накопившая огромное число экспериментальных данных, не намного продвинулась по сравнению с античностью в понимании мира как единого органичного целого, бесконечного в пространстве и времени.
Главный вопрос натурфилософии: из чего все произошло. Мыслители древности выдвигали в качестве первоосновы мира четыре стихии: воду (Фалес), воздух (Анаксимен), землю и огонь (Гераклит). Одним из крупнейших в раннегреческой натурфилософии являлось учение Гераклита. По его представлениям все предметы рождаются из огня и разрушаясь, вновь превращаются в огонь. На основе представлений о превращении огня он строил свою космологию. Все в мире изменчиво, утверждал он, «в один и тот же поток нельзя войти дважды и нельзя дважды застигнуть смертную природу в одном и том же состоянии». Все изменения в мире подчинены всеобщему закону - Логосу, благодаря которому первичный Хаос превращается в упорядоченный Космос.
Исследователи выделяют три научные программы античности:
1. Математическая программа Пифагора (VI в. до н.э.) и Платона (427- 348 г. до н.э.).
Пифагорейской школе удалось сформулировать два важнейших тезиса, которые легли в основу всей последующей науки:
- явления природы и ее законы наиболее четко и лаконично выражаются языком математики;
- количественные (числовые) отношения отражают гармонию и порядок мира, симметрию его частей, правильность их объединения и ритмичность движения.
2. В основе корпускулярной(лат. corpusculum - частица) атомистической программы лежат представления эпикурейской школы (Левкипп, Демокрит, Эпикур), которые позднее были изложены древнеримским поэтом и философом-материалистом Лукрецием Каром (I в. до н.э.) в его поэме «О природе вещей». По их мнению окружающий мир состоит из некой субстанции, которая существует вечно и независимо от человека. Сегодня ее называют - «материя».
Ядро этой программы составляет учение Демокрита (470-405 г. до н.э.) об атомах. Вселенная состоит из пустоты и невидимых глазу телец - атомов, которые являются первокирпичиками Мироздания. Атомы бесчисленны по количеству, разнообразию, формам и величинам. Мир дискретен (прерывен). Находясь в вечном движении, атомы сталкиваются, образуют единый вихрь, соединяются и разъединяются. При этом они образуют самые разнородные по свойствам тела и порождают все сложное - огонь, воду, воздух, землю. В вихре движения тяжелые тельца собираются в центре и образуют шарообразное тело. От него отделяется оболочка, которая простирается над всем миром и образует бесконечную Вселенную, в центре которой находится Земля. В своих философских построениях Демокрит опирался на непосредственное исследование природы. Им было выдвинуто предположение об атомистическом происхождении чувственных ощущений человека за счет взаимодействия атомов, истекающих от тел, и атомов в теле человека, что и вызывает, по его мнению, ощущения цвета, вкуса, запаха, звука.
Эпикур (341- 270 г. до н.э.) развил идеи Демокрита и дал им философское обоснование. Первоосновой любого учения он признавал логические умозаключения, считая, что таким путем можно получить новое знание о вещах даже при отсутствии данных непосредственного опыта. Отвергнув концепции Платона, он стремился вывести законы природы из самой же природы, представляя окружающий его мир зримым, ощущаемым, движущимся, вечно меняющимся, и в то же время непреходящим, остающимся единственной реальностью. Он признавал что материя - это бесконечное множество движущихся атомов, но при этом пытался выяснить, что за сила движет ими, и какова конечная цель этого движения. Он считал, что мир - это нагромождение случайностей, и совершенно лишен какой-либо внутренней логики и внутреннего смысла. Размышляя над природой случайного, он создал учение об отклонениях атомов от прямолинейных путей, в результате которых происходят столкновения, и возникает вихревое движение, приводящее к образованию вещей. Случайность, по его мнению, лежит в природе самих вещей и носит объективный характер.
Эта программа стала истоком корпускулярной традиции современной науки.
3. Завершающим этапом развития античной науки можно считать создание континуальной(лат. continuum - непрерывное)программы, объединившей в себе все достижения античности. Ее основоположником был Аристотель (384-322 г. до н.э.). Его сочинения охватывают многие области знания: «Органон», «Метафизика», «Физика», «О возникновении животных», «О душе», «Этика», «Политика», «Риторика», «Поэтика». Он разработал первую систематику животных, сделал попытку создать единую картину мира. В трактате «О душе» он утверждал, что всему материальному миру присуща некоторая внутренняя сущность - душа, которая имеет несколько уровней бытия. Самый низкий уровень души свойствен неживым объектам - камням, воде, воздуху. На следующем уровне находятся растения - травы, цветы и деревья; на следующем - насекомые, рыбы, животные. И на самом высоком уровне находится человек, душа которого бессмертна. В его представлениях находится место и Богу, который вращает небесную сферу, в центре которой находится Земля.
Свои воззрения на устройство природы он представил в книге «Физика», в которой изложил учение о четырех причинах существования мира - материи, форме, действии и цели, а также свои взгляды на взаимосвязь пространства, времени и движения. Занимая промежуточную позицию между Демокритом и Платоном, он считал, что материя существует вечно и образует в разных соединениях различные предметы. Все явления протекают во времени. Вместилищем предметов является пространство. Пространство неразрывно связано с телами. Пустоты или чистого места без тел не существует. Только тогда тело находится в пространстве, когда соприкасается с другими телами. Мир непрерывен. Порядок и гармония мира по Аристотелю обусловлены целевой причиной движения и формой.Когда-то давно, под действием первотолчка материя пришла в вихревое движение, упорядочив ранее существовавший Хаос. Движение - это изменение вообще. Оно осуществляется борьбой противоположных качеств - тепла и холода, сухости и влажности. В мире нет ничего неизменного и случайного, развитие его во времени строго детерминировано. Его учение о событийности движения почти два тысячелетия господствовало в представлениях человечества. Этот взгляд стал истоком континуальной традиции современной науки.
C тех самых пор на протяжении многих столетий в науке преобладали попеременно то континуальная (Гюйгенс, Френель, Максвелл и др.), то корпускулярная (Ньютон, Планк и др.) традиции. И лишь наука XX века осознала дуалистичность мира, дуалистичность (лат. dualis - двойственный) материи, которой присущи как полевые (волновые), так и корпускулярные свойства (корпускулярно-волновой дуализм).
2. Средневековая наука
С распадом античных цивилизаций (I-II в. н.э.) рассеялась по миру их уникальная культура, а с ней и те зачатки наук, которые сформировались в натурфилософии. И лишь к середине X века, после окончательного установления христианства, сквозь тьму варварства и мракобесия начинают пробиваться ростки новой культуры. Рождаются средневековые города, а с ними и элементы демократического управления, интенсивно развиваются ремесла. В XII-XIII в. разрозненные остатки древней науки начинают собираться воедино. Переводятся на современные языки, сохранившиеся труды древнегреческих философов. Ренессанс гуманитарной культуры послужил мощным толчком к возрождению знаний античности. В недрах средневековой культуры появляются зародыши экспериментальной науки. Ее провозвестником стал Р.Бэкон (1214-1294). «Есть два способа познания: через аргументы и через опыт» - утверждал он. Занимаясь опытами, он нашел способы получения фосфора, магния, висмута, изучал оптические явления и преуспел в их объяснении. Становлению опытного естествознания во многом способствовали бурноразвивающиеся и процветающие астрология, алхимия, ятрохимия (химия ядов).
XII-XIII века - начало эпохи Возрождения, расцвет которой приходится на XIY-XY в. Она подарила человечеству такого титана как Леонардо да Винчи (1452-1519), на плечах которого сформировалась наука XVI-XVII веков. Один из лучших умов человечества, живописец и скульптор, архитектор, ученый, инженер, он изучал движение тел, трение скольжения, гидравлику, сопротивление материалов, разрабатывал проекты каналов, ирригационных систем, машин для подъема и транспортировки грузов, металлургических печей, прокатных станов, ткацких, печатных и деревообрабатывающих станков, летательных аппаратов, подводных лодок, мостов. В музеях мира хранится около 10 тысяч листов с его чертежами и проектами. Как ученый, он считал, что любой проект должен подтверждаться математическими расчетами и проходить экспериментальную проверку.
Культура Возрождения подготавливала почву для становления «зрелой» науки. Этому во многом содействовали средневековые монастыри, школа и университет. Поощрялась книжная ученость. В средневековой схоластике (греч. scholastikos - школьный, ученый) высокий уровень развития получило логико-дискурсивное мышление. Во многом это способствовало возвращению к античной математической программе, ее активному развитию и внедрению в научные исследования.
XY - это век великих географических открытий, зарождения океанических цивилизаций и колониальной системы. К этому времени Западная Европа истребила бо¢льшую часть своих природных ресурсов и в поисках возможностей их восполнения обратила свои взоры на восток и на запад. Не просто любопытство вело Колумба, Магеллана, Васко да Гама в неизведанные края, а необходимость - завоевание новых территорий и развитие торговли. Нужно было уплывать в неизведанные дали в поисках сказочно богатых стран, но и велико было желание вернуться на родину. Однако парусный флот и примитивные способы навигации, доставшиеся средневековью в наследство от античности, уже не удовлетворяли требованиям времени. Нужно было развивать кораблестроение, технику, навигацию. А это невозможно сделать без физики и астрономии. Необходимость овладения навигацией заставила человека более пристально взглянуть на небо и выделить астрономию в самостоятельную область исследования. Именно в это время она отделяется от астрологии.
В конце XYI века средневековая цивилизация с ее феодальным укладом и ремесленным производством подходит к своему закату. Нарождается новый тип социально-экономических отношений, основанный на развитии мануфактурного производства. Возвышение практической деятельности, одобрение практицизма и предпринимательства, новый взгляд на человека как энергичную личность, устремленную на преобразование мира, поощрение индивидуализма, замешанного на религиозных ценностях- все это способствовало формированию нового общественного сознания.
Этот период в развитии цивилизации ознаменовался крупнейшей революцией в естествознании, сопровождавшейся жесткой борьбой с религией за новое мировоззрение. У ее истоков стояли Н.Коперник (1473- 1543), Д.Бруно (1548-1600), Г.Галилей (1564-1642), И.Кеплер (1571-1630). Умирающий Н.Коперник в 1543 году публикует свою книгу «О вращении небесных сфер», в которой утверждается гелиоцентрическая система мира, о которой догадывался еще Аристарх Самосский в III в. до н.э. Зарождается пантеизм - философское учение, отождествляющее бога и природу, как единую, вечную и бесконечную субстанцию, причину самой себя. Философ - пантеист и поэт Д.Бруно выдвинул гипотезу о бесконечности Вселенной и бесчисленности миров, за что и был, как еретик сожжен на костре, на площади Цветов в Риме.
Революция, произведенная Н.Коперником в астрономии, стала мощным толчком для развития оптики и механики и обусловила переход к новому методу исследования, основу которого составили эксперимент и математическое описание его результатов. В 1609 г. Галилей изобрел телескоп. С его помощью он рассмотрел рельеф Луны, темные пятна на Солнце, открыл спутники Юпитера, наблюдал фазы Венеры. Будучи активным защитником гелиоцентрической системы, он в 1633 году был, подвергнут суду инквизиции, вынудившей его отказаться от учения Коперника. Галилей заложил основы экспериментальных исследований в механике макромира. Внедрение математики в физические исследования позволило ему представить свои результаты в виде кинематических уравнений. Им впервые было сформулировано понятие физического закона в его современном значении. Он ввел в механику представление об относительности. И.Кеплер, используя собственные наблюдения и измерения Тихо Браге, Кеплер открыл законы движения планет вокруг Солнца и вывел уравнения их орбит, о чем и возвестил миру в книгах «Новая астрономия» и «Гармония мира».
В это время происходит становление рационалистического метода познания. Именно ему наука обязана своими крупнейшими достижениями и своим превращением в могучую производительную силу. В его представлениях человек не может что-либо изменить в природе, но покорить ее силы и заставить их работать на себя, он в состоянии. Методологические основы классического рационализма были заложены английским философом Ф.Бэконом (1561-1625), свою завершенность он получил в работах Р.Декарта.
Небывалого уровня развития по сравнению с античностью достигла экспериментальная техника, что способствовало углублению научных исследований, разработке новых станков, инструментов, механизмов и производственной техники. Подготавливался переход к новому, машинному производству и вызревали условия для промышленной революции XYII-XYIII веков.
Новые понятия и термины: натурфилософия, корпускулярный, континуальный, дуализм, схоластика, ятрохимия, кинематика, гелиоцентрическая система.
Ведущие идеи:
- принципиальное отличие натурфилософии от других способов познания окружающего мира;
- научные программы античной натурфилософии как истоки традиции современной европейской науки;
- зарождение экспериментальной науки;
- становление рационалистического метода исследования.
2.2.2. КЛАССИЧЕСКАЯ НАУКА
1.Естествознание в «Новое время»
Эпоха средневековья плавно перетекает в Новое время (XYII-XYIII в.). Это начало промышленного освоения природы и время зарождения техногенной цивилизации. Оно характеризуется интенсивной урбанизацией, невероятно быстрой индустриализацией, зарождением классической науки и укреплением ее позиций. В промышленность внедряются машины и механизмы, заменяющие физический труд человека. Строятся первые механические и паровые двигатели. В результате череды социальных революций осуществляются глубокие преобразования в обществе, происходит демократизация политических структур, в общественном сознании закрепляется идеал - образ человека, рационального, умеренного и аккуратного, одной из важнейших целей которого является получение денег и прибыли. На этом социально - культурном фоне и происходит развитие науки, она приобретает современные черты, окончательную огранку получает научный метод исследования, набирают силу процессы дифференциации и диверсификации, закладывается структура естествознания.
Удовлетворение социальных потребностей общества было связано с развитием механики, которая в начале XYIII века достигла своего апогея и превратила эпоху пара и машины в «новое время». Весь ученый физический мир занимается проблемами механики: И.Ньютон (1643-1727), Х.Гюйгенс (1629-1695), Р.Гук (1635-1703).. Х.Гюйгенс, продолжая исследования Галилея, изучил колебательное движение тел и его законы. И первыми механическими часами человечество обязано тоже ему. Р.Гук изучал особенности деформации твердых тел, что имело чрезвычайно важное значение для развивающейся техники. Свою завершенность механика получила в работах И.Ньютона. Его интересы в науке разнообразны. Но основные направления исследований Ньютона - математика, механика и оптика. В 1687 году выходит его знаменитое сочинение «Математические начала натуральной философии», в котором он определяет основные понятия механики - массу, силу, количество движения, пространство, время, развивает учение Галилея об относительности движения, открывает законы динамики и следствия из них - законы сохранения. Для изучения природы движения Ньютон разрабатывает специальный математический аппарат - дифференциальное и интегральное исчисление. Особое место в творчестве Ньютона занимает теория тяготения. Опираясь на многовековые наблюдения предшественников за движением планет Солнечной системы, на исследования Кеплера и Гюйгенса, он открывает закон всемирного тяготения. Все в механике становится на свои места. Движение тел происходит под действием сил. Порядок в движении планет определяет сила тяготения. Но откуда она взялась изначально? Кто совершил первотолчок и закрутил пружину мира? Ньютон видел ответ на эти вопросы в божественном начале мира. Работы Ньютона стали фундаментом модели мира - механической картины, которая получила свою окончательную огранку к концу XVIII века благодаря работам И.Бернулли (1667-1748), Д.Бернулли (1700-1782), Л.Эйлера (1707-1783), Ж.Лагранжа (1736-1813), Ж.Д,Аламбера (1717-1783), Г.Лейбница (1646-1716) и других.
Ее основные идеи:
1. Мир дискретен и представляет совокупность взаимодействующих тел, которые состоят из мельчайших корпускул - атомов.
2. Все тела находятся в вечном движении в пространстве, заполненном гипотетической упругой средой - эфиром, подобной легкому газу, благодаря которой осуществляется их дальнодействие.
3. Пустое пространство есть вместилище тел. Оно абсолютно, трехмерно, однородно и изотропно. Время абсолютно, однородно, однонаправленно и необратимо. Пространство и время не связаны между собой.
- Положение тела в пространстве в любой момент времени можно указать с помощью системы отсчета и координат. Специальные преобразования позволяют перейти от одной инерциальной системы отсчета к другой.
- Тела природы обладают внутренним свойством двигаться прямолинейно и равномерно, различаются массой и энергией. Взаимодействие тел носит гравитационный характер, количественно определяется законом всемирного тяготения и распространяется с бесконечно большой скоростью. Действие сил обусловливает особенности движения тел.
- Энергия, импульс и момент количества движения тела могут принимать непрерывный ряд значений.
- Законы сохранения обеспечивают вечность и неизменность мира, непрерывность и периодичность движения.
- Все тела природы стремятся к устойчивому состоянию с минимумом энергии.
- Все явления связаны жесткими причинно-следственными связями, которые предопределяются законами механики.
- Законы механики универсальны и применимы к любым процессам.
Механическая картина мира явилась важной ступенью в познании природы. Как и всякая модель, она условна и приемлема лишь для описания движения макротел, скорости которых много меньше скорости света. На ее базе сформировалось представление о природе как сложном и точном «часовом» механизме, некогда заведенном в результате «божественного первотолчка», механизме неизменном, раз и навсегда заданном. Ее законы исключают случайность и неопределенность или рассматривают их как досадное недоразумение. Они описывают явления природы в аналитических функциях, отражающих однозначную зависимость. Этому во многом способствует математика того времени, благодаря которой физические законы предстали перед человечеством в виде строгих и совершенных математических формул. Это значило, что, все явления природы связаны между собой жесткими причинно-следственными связями.
«Механический» подход к описанию строения и поведения объектов исследования получает статус универсального. Предпринимаются грандиозные попытки создания «социальной физики», которая бы на основе законов математики и механики смогла описать функционирование общества.
В недрах механического описания космоса вызревают эволюционные идеи, которые связаны с именами И.Канта (1724-1804) и П.Лапласа (1749-1827), в трудах которых разработана первая космогоническая гипотеза о происхождении Солнечной системы из первичной туманности.
Успехи механики не оставили неизменными другие области естествознания. Этому во многом способствовали устремления нарождающегося капитализма овладеть технологиями металло- и стекловарения, новыми видами энергии и построить новые виды двигателей. Для этого необходим был тесный союз разных отраслей знаний и техники. Особым вниманием начинает пользоваться физика тепловых явлений. Ее эпоха открывается работами Э.Мариотта (1620-1684) и Р.Бойля (1627-1691), но свою завершенность она получила лишь в последней трети XIX века. XVIII век дал работы по термометрии (Реомюр, Фаренгейт, Цельсий), построил молекулярно-кинетическую теорию, в основу которой были заложены атомистические представления химии и классическая механика.
Прогресс химии конца XVIII начала XIX века связан с именами физико-химиков А.Лавуазье (1714-1794), Я.Берцелиуса (1779-1847), Д.Дальтона (1755-1844), Гей Люссака (1778-1850), А.Авогадро (1775-1856), в исследованиях которых молекулярно-кинетическая теория, химическая атомистика и физика газов развивались как единое целое. Это во многом предопределило глубокие качественные изменения в химии. Предшествовавшая ей алхимия накопила огромный практический багаж в получении многих ценных продуктов, в разработке многих приемов, в создании специальной химической лабораторной техники. Но развитие металлургии, стекловарения, производство керамики и красителей не могли основываться на алхимии. Необходимы были точные знания об элементном составе вещества, его структуре и свойствах, о характере протекания химических процессов и способах управления ими. Осознание этого и формирование химии как науки происходило постепенно, в процессе жесточайшей борьбы с алхимическими воззрениями. Первые революционные шаги были связаны с отказом от представлений об элементах-свойствах: тепла, холода, влажности, сухости и т.д. Большая заслуга в этом принадлежит Р.Бойлю. Его исследования показали, что свойства тел не имеют абсолютного характера и зависят от того, из каких элементов они составлены. При этом под химическими элементами им понимались простые неразложимые тела, из которых составлены все сложные вещества. Первая научная революция в химии связана с именем А.Лавуазье (1743-1794). Он окончательно разрушил теорию теплорода, выяснил роль кислорода в процессах дыхания и горения, заложил основы термохимии, количественных методов исследования и рациональной номенклатуры.
Наиболее прогрессивные идеи естествознания того времени связаны с именем русского ученого мирового значения М.В.Ломоносова (1711-1765). Научные идеи Ломоносова далеко опередили науку нового времени. Развивая атомно-молекулярные представления о строении вещества, он отказался от теории теплорода. Исследуя механическое движение, выдвинул идею вечности движения, высказал и широко использовал в своих исследованиях принцип сохранения материи и движения. Вместе с Г.Рихманом исследовал атмосферное электричество, создал несколько оптических приборов, открыл атмосферу Венеры, объяснил происхождение многих полезных ископаемых и минералов. По его инициативе был открыт Московский университет, который носит его имя.
Биология этого времени находится на описательном уровне. Она ориентируется, главным образом, на изучение биоразнообразия и создание систематики животных и растений. Наиболее удачную классификацию мира живого, которую мы используем до сего времени, построил шведский естествоиспытатель К.Линней (1707-1778). В своих работах «Система природы» (1735) и «Философия ботаники» (1751) он разработал иерархическую классификацию, в основе которой лежит деление живого мира на царства, типы, классы, отряды, семейства, роды и виды. В ней он описал около 1500 видов растений и животных. Господствовавшая в те времена идея преформизма (лат. praeformo - предобразую, учение о наличии в половых клетках структур, предопределяющих развитие зародыша), представления Линнея о неизменности и раз и навсегда заданности форм живых организмов, по сути, составляли основу механицизма в биологии.
Начала современной физиологии, и эмбриологии были заложены еще в работах В.Гарвея (1578-1657). Но возможность изучать микроструктуру живого появилась только с внедрением микроскопии. Точно неизвестно, какой гений изобрел микроскоп, но доподлинно известно, что А.Левенгук (1632-1723), торговец сукном, ставший впоследствии известным натуралистом, впервые с помощью микроскопа увидел жизнь простейших организмов, изобрел способ наблюдения бактерий в темном поле. Физик Р.Гук догадался изобрести для микроскопа подсветку. Использование оптики для изучения живого имело эпохальное значение для естествознания. Вплоть до изобретения электронного микроскопа в середине ХХ столетия оптический микроскоп был единственным инструментом, позволявшим заглянуть внутрь клетки и изучать отдельные ее органеллы.
Но в двери биологической науки уже стучатся идеи эволюционизма Ж.Ламарка (1744-1829) и теория катастроф Ж.Кювье (1769-1832). Это были поистине революционные идеи, но идеи, не оцененные по достоинству современниками. Ламарк на основе данных об изменяемости различных видов животных и растений в ходе окультуривания пришел к выводу, что живые организмы постоянно изменяются, усложняясь в своей организации, в результате влияния внешней среды и некоего их внутреннего стремления к усовершенствованию. Кювье, будучи крупным специалистом, в области сравнительной анатомии и палеонтологии, установил соответствие строения и функций отдельных органов в органных системах, выдвинул и обосновал принцип соответствия. Основываясь на данных сравнительной анатомии и палеонтологических исследований, он пришел к выводу, что смена ископаемых фаун является следствием крупных геологических катастроф. Но ни Ламарк, ни Кювье не смогли вскрыть истинных причин изменяемости видов.
Наука постепенно вытесняет религию и претендует на ведущее место в мировоззрении.
Именно в этот период возникает и углубляется водораздел между естественными и гуманитарными науками, нарушается внутренняя симметрия культуры, происходит становление технократической модели развития цивилизации.
2. Естествознание XIX века
Для европейской цивилизации XIX век стал временем расцвета индустриализации и торжества науки. Тесный союз машинного производства с наукой к концу XIX века создает огромные возможности для наращивания производств и удовлетворения материальных потребностей человека.
Начало XIX века ознаменовалось мощным развитием теплотехники и теплоэнергетики, интенсивным внедрением парового двигателя в транспорт и промышленность. Но постепенно эпоху теплотехники сменяет эпоха электричества, которая еще в бо¢льших масштабах преображает жизнь, быт и труд человека, особенно в крупных городах. К концу века цивилизация приобретает новый облик. Человечество получает, электрический двигатель, электрическую лампу, телефон, телеграф, радио, автомобиль. Закладывается воздухоплавание. Темпы и динамика технического прогресса требуют непрерывного технологического обновления, подталкивают науку к расширению и углублению познания в области мега- и микромира. В целостной системе культуры все громче дает о себе знать диссонанс между ее материальным и духовным аспектами. Погоня общества за материальным благополучием (что само по себе и неплохо) отодвигает на задний план гуманитарные сферы деятельности, делает приоритетными естественные науки, которые становятся базисом в формировании мировоззрения эпохи.
Освоение теплоэнергетики, появление самых разнообразных модификаций тепловых двигателей и их эксплуатация требуют глубокого знания тепловых процессов. Выкристаллизовывается термодинамический подход к их изучению. Его становление связано с именами С.Карно (1796-1832), Р.Майера (1814-1889), Р.Клаузиуса (1822-1888), Г.Гельмгольца (1821-1894), В.Нернста (1854-1941) и др. Изначально термодинамика изучает тепловые свойства макроскопических систем, не вдаваясь в их микроскопическое строение. Ее основание составляют такие понятия как температура, теплота, работа, энергия, теплоемкость, энтропия, энтальпия (греч. entalpo - нагреваю; характеристика состояния термодинамической системы, связанная с внутренней энергией) и три закона (начала): первое начало есть закон сохранения и превращения энергии в тепловых процессах, второе - указывает направленность самопроизвольных тепловых процессов (самопроизвольная передача теплоты всегда происходит от более горячего тела к холодному), третье начало (теорема Нернста) утверждает, что энтропия системы при стремлении ее температуры к нулю также стремится к нулю. Первое и второе начала, по сути, устанавливают отношения между переданной системе теплотой и совершенной механической работой. Создается мнение, что термодинамика - ни что иное, как механическая теория теплоты. Однако открытая термодинамикой необратимость тепловых процессов нарушила представления об однозначности их описания. И уже в работе Клаузиуса «Механическая теория тепла» появляется идея о статистическом характере тепловых законов. Одно из важнейших утверждений этой работы: поведение коллектива частиц носит вероятностный характер. На арену науки выходят случай, хаос, вероятность и возможность порядка из хаоса.
Приложение теории вероятности к термодинамическим системам явилось важной вехой в развитии физики, которая получила достойное признание лишь в двадцатом веке. Прорыв в этой области сделал организатор и первый директор знаменитой на весь мир Кавендишской лаборатории Д.Максвелл (1831-1879), который, используя классическую механику и представления о вероятности, получил закон распределения молекул по скоростям, показал, что в газовых средах, где преобладает хаотичность движения частиц, есть определенный порядок. Развивая это направление, Л.Больцман дал статистическое обоснование второго начала, выразил энтропию системы через вероятность, описал поведение закрытой термодинамической системы. При разработке статистической механики идеального газа Д.Максвелл и Л.Больцман указали на принципиальное отличие поведения отдельной частицы и большой совокупности частиц. Если при описании одной макрочастицы всегда можно определить ее координаты и скорости в любой момент времени, то при описании поведения большого коллектива частиц (поведение молекул газа в сосуде) можно лишь указать распределение частиц в зависимости от какого-либо параметра (например, распределение молекул газа по скоростям, или распределение по высоте над уровнем моря плотности воздуха в атмосфере Земли). Закономерности этих распределений как целого есть результат хаотического движения частиц. С работами Максвелла и Больцмана закладываются основы нового направления - статистической физики, которая основывается на атомистике и вероятности. В науке появляется представление о фундаментальности случайного и вероятностном характере причинно-следственных отношений. Эти идеи стали основополагающими для развития науки ХХ века и синергетического подхода к изучению мира.
XIX век - время интенсивного развития теории электричества. Первоначальные представления об электричестве появляются еще у древних. Но научное изучение электрических явлений начинается с работ Ш.Кулона (1736-1805) и А.Вольты (1745-1827). Вступление человечества в век электрических машин открывают исследования М.Фарадея (1791-1867), Э.Ленца (1804-1865), Х.Эрстеда (1777-1851), А.Ампера (1775-1854). Свою завершенность электромагнитная картина мира получила в работах Д.Максвелла, и выразилась в системе уравнений, отражающих взаимосвязь электрических и магнитных явлений. Важным выводом из этой теории явилась гипотеза о существовании электромагнитного поля и электромагнитных волн, что и было подтверждено экспериментально в работах Г.Герца (1857-1894), а затем использовано практически для радиосвязи А.Поповым (1859-1905). Одним из важнейших выводов из теории Максвелла стал вывод о том, что свет есть поток электромагнитных волн.
Основные положения электромагнитной картины:
1. Одной из форм существования материи является электромагнитное поле - сплошная среда, заполняющая все пространство. Его силовыми центрами являются электрические заряды.
- Взаимодействие между зарядами осуществляется по механизму близкодействия и количественно определяется законом Кулона.
- Направленное движение зарядов представляет собой электрический ток, который и является источником магнитного поля. Взаимодействие токов количественно определяется законом Ампера.
- Энергетической характеристикой поля является потенциал.
- Cиловыми характеристиками электромагнитного поля являются взаимосвязанные между собой вектора напряженностей (или индукции) электрической и магнитной составляющей.
- Переменное электрическое поле порождает вихревое магнитное поле. В свою очередь переменное магнитное поле порождает вихревое электрическое. Количественно эту взаимосвязь определяет закон электромагнитной индукции.
- Электромагнитное поле существует в виде электромагнитных волн. Скорость его распространения зависит от электрических и магнитных свойств среды. В вакууме оно распространяется со скоростью света.
- Электромагнитные волны обладают энергией и импульсом.
- Электромагнитные взаимодействия обеспечивают устойчивость таких микросистем как атом и молекула.
При переходе от механической картины мира к электромагнитной произошли кардинальные изменения взглядов на фундаментальные свойства материального мира. Пространство перестало быть пустым. Оно заполнено сплошной средой - полем. Отпала необходимость в мировом эфире, его функции выполняет поле. Механическое перемещение дополняется волновым процессом, который можно описать с помощью законов электродинамики.
К концу XIX века сложилось вполне отчетливое представление об атомно-молекулярной структуре вещества. Открытие протона и электрона позволило построить модель атома как системы, состоящей из более простых элементов. Все атомы имеют массивное протонное ядро и электронную оболочку. Атомы перестали быть первокирпичиками мироздания. На их роль претендуют три элементарные частицы - фотон, электрон и протон.
Развитие теории тепловых процессов и электричества перевели на новую ступень представления о химическом процессе. Начинает активно развиваться органическая химия. Важная веха в ее становлении связана с именем Ш.Жерара (1816-1856), разработавшего общую классификацию органических веществ на основе открытия гомологических и генетических рядов органических соединений, а также атомистических представлений. В дальнейшем это позволило А.Бутлерову (1828-1885) разработать теорию химического строения органических соединений. Исследования в органической химии XIX века стали основой синтетической химии, нефтехимии, биохимии, которые достигнут своего апогея в XX веке. В химию XIX века приходит осознание того, что качественное разнообразие веществ и их свойств связано не только с составом, но и структурой молекул, их пространственным строением. Начинает прослеживаться взаимосвязь понятий: элемент, система, структура, свойство, функция.
Крупнейшей революцией в естествознании XIX века стало открытие Д.Менделеевым (1834-1907) периодического закона и периодической системы элементов. Сын учителя из провинциального губернского городка Тобольска, он достиг небывалых успехов в естествознании, став автором фундаментальных исследований по химической технологии, физике, метрологии, метеорологии, сельскому хозяйству. Но мировую известность ему принесло открытие периодического закона. В качестве основополагающего признака для классификации химических элементов он пробовал использовать разные критерии: масса атомов, реакционная способность и другие. В конечном итоге, после глубоких размышлений он выстроил химические элементы по их способности участвовать в тех или иных видах химических реакций. Высокий уровень интуиции, гениальное предвидения и кропотливый труд позволили ему сделать это по истине эпохальное открытие. Правильность его выбора получила теоретическое обоснование лишь спустя много лет, в первой трети ХХ века, когда благодаря открытиям в области атомной физики, было установлено, что выявленный им порядок следования элементов связан с усложнением структуры атомов и обусловлен их электронным строением. В честь него менделевием назван один из искусственно полученных химических элементов, его имя носит действующий вулкан на Курильских островах, один из подводных хребтов Северного Ледовитого океана, научное химическое общество России и технологический институт в Москве.
К концу XIX века в самостоятельную область выделилась химическая термодинамика, сформировались представления о кинетике и катализе химических процессов. Голландский химик Я Вант-Гофф (1852-1911) в своей книге «Очерки по химической динамике» сформулировал законы, устанавливающие зависимость направления химических реакций от температуры. Французский физико-химик Ле-Шателье (1850-1936) сформулировал принцип подвижного равновесия в химическом процессе и выявил условия, при которых оно смещается в сторону образования целевых продуктов. Это открывало широкие возможности в управлении химическими процессами. Объединение органической химии с учением о кинетике и катализе позволило в ХХ веке поставить на качественно новую основу химическую технологию и промышленный органический синтез, роль которых в развитии современной цивилизации трудно переоценить.
XIX век оказался переломным и для биологии. Благодаря достижениям физики и химии она переходит с описательного уровня на более высокий - молекулярный, связанный с изучением биохимических процессов. И этому во многом способствовало развитие измерительной техники и методов физико-химических исследований. На качественно новую ступень переходит цитология. М.Шлейден (1804-1881), Т.Шванн (1810-1882), Р.Вирхов (1821-1902) выяснили различия между животной и растительной клеткой, выявили их наиважнейшие структурные элементы, установили факт клеточного деления.
В работах Ч.Дарвина (1809-1882) и А.Уоллеса (1823-1913) получают дальнейшее развитие эволюционные идеи XYIII века. Их обоснование было изложено в книге Дарвина «Происхождение видов путем естественного отбора» (1859). Опираясь на материалы, полученные им в кругосветном путешествии на корабле «Бигль» и практику селекционной работы, он в качестве концептуальных выдвигает идеи изменчивости, наследственности и естественного отбора. Внешняя среда, воздействуя на отдельный организм, может приводить к случайным изменениям. Появление случайных изменений, приспособительных признаков, передача их по наследству и накопление в потомстве приводит к разнообразию внутри одного вида. Менее приспособленные индивиды дают меньшее потомство и вымирают, уступая место более приспособленным. И природе неважно, будут ли это более сложные или менее сложные организмы, важно, чтобы они были наиболее приспособленными. Появившийся признак у наиболее приспособленных закрепляется, и постепенно внутри данного вида складывается новая разновидность с новым набором признаков. По сути, случайные изменения на одном уровне (уровне индивидуального развития) проявляются на другом системном уровне - уровне вида. Учение о случайности пришло в биологию почти одновременно с представлением о ее фундаментальной роли в тепловых процессах. Идея эволюции биологических систем в сторону усложнения и возрастающей упорядоченности предвосхищала появление идей синергетики. Но в теории Дарвина имелось слабое место, на которое указал современник Дарвина, инженер Ф.Дженкинс. Было неясно, каким образом случайный признак закрепляется в потомстве, ведь по всем правилам он должен рассеиваться. Лишь генетике ХХ века удалось снять этот вопрос и прояснить характер наследования и закрепления признаков в потомстве. Ее основы были заложены Г.Менделем (1822-1884). При проведении опытов по скрещиванию разных сортов гороха им были установлены эмпирические законы наследования видовых признаков:
- первое поколение гибридов оказывается единообразным и несет признаки только одного из родителей;
- при скрещивании между собой двух потомков первого поколения во втором поколении наблюдается расщепление по фенотипу (греч. phaino- являю, обнаруживаю; совокупность всех свойств организма, сформировавшихся в процессе его индивидуального развития) в соотношении 3:1;
- при скрещивании двух организмов, относящихся к «чистым линиям», но отличающихся по двум и более парам альтернативных признаков, соответствующие им признаки комбинируются во всевозможных сочетаниях.
Эти открытия получили признание лишь спустя двадцать лет после его смерти, а теоретическое обоснование - благодаря развитию молекулярной биологии во второй половине ХХ столетия.
К концу XIX века приобретает законченные формы классическая биохимия, толчком для становления которой послужило открытие мочевины (1828), развитие органической и синтетической химии, выделение и изучение важнейших биополимеров. Совершенствование оптики, физических и химических методов анализа позволили выделить вещество наследственности ДНК, способствовали развитию микробиологии и бактериологии, которые к концу XIX века занимают ведущие позиции в биологической и медицинской науках. В шестидесятых годах XIX века Э.Геккелем (1834-1919) были заложены основы биологической экологии - науки о взаимосвязях живых организмов со средой обитания.
Но несмотря на огромные успехи биология так и не смогла построить единой биологической картины мира. Во многом это было связано с тем, что она затруднялась ответить на вопрос о происхождении живого и причинах его принципиального отличия от неживого. Ученые-экспериментаторы, исследуя структуру и функционирование клетки, механизмы ее деления, пытались выявить причины зарождения живого, однако XIX веку решить эту проблему биологической науки не удалось.
Космологические гипотезы конца XIX века были, в первую очередь, результатом математического, физического и философского обобщения многочисленных наблюдений, начиная от глубокой древности. По мере развития математических основ естествознания, совершенствования измерительной аппаратуры, накопления экспериментальных данных о возрасте звезд и звездных систем, их геометрических размерах и массах, скоростях движения, температурах, спектрах излучения, к концу XIX века сформировалась убежденность в том, что Вселенная бесконечна в пространстве и времени, неизменна (стационарная космологическая модель) и имеет определенную структуру. Для построения такой модели были использованы принципы классической механики и евклидова геометрия. Идеи неевклидовой геометрии Н.И.Лобачевского (1792-1856) и Б.Римана (1826-1866), теория n-мерных пространств (Г.Минковский), становление которых приходится на вторую половину XIX века, а также открытие «разбегания» галактик станут подножием для разработки в начале ХХ века модели нестационарной Вселенной.
К концу XIX века классическая наука приняла законченный вид. Получили свою завершенность фундаментальные идеи естествознания и соответствующие им принципы - сохранения, относительности, направленности процессов, периодичности. Внедрение математических методов и формализация исследований в естественных науках завершили строительство здания классического рационализма. Наука поставила последние штрихи в классическом детерминизме. Складывалось впечатление, что она выполнила свою познавательную функцию, раскрыла все тайны Мироздания, ответила почти на все вопросы человека и обеспечила ему достойное существование. Крупные успехи были достигнуты во всех областях естествознания В теоретической и экспериментальной физике были построены механическая, тепловая и электромагнитная картины мира, разработаны статистическая физика и электронная теория, предложена модель строения атома, измерена скорость света и изучены его свойства. С открытием периодического закона химических элементов приобрела свою завершенность химия. Казалось, что еще чуть-чуть и описание природы с помощью математики примет всеобъемлющую форму и можно будет, сформулировав несколько основополагающих аксиом, построить единую научную картину мира.
3. Кризис классической науки
Однако на пути построения единой естественнонаучной картины мира появились некоторые препятствия. И связаны они были в первую очередь с наукой, позволившей раздвинуть горизонты познания в микро- и мегамир - оптикой, и появлением экспериментальных фактов, которые классическая физика не могла объяснить. Свет всегда был загадкой для науки. В представлениях XVII-XVIII веков поддерживалось две гипотезы о его природе: свет - есть поток особых световых корпускул (Ньютон), и свет - есть поток волн (Гюйгенс). Но так как авторитет Ньютона в те времена был непререкаем, господствовала первая гипотеза. В начале XIX века опыты Т.Юнга (1773-1829) и О.Френеля (1788-1827) по интерференции и дифракции утвердили представления о волновой природе света. Теоретическое обоснование эта точка зрения получила в классической электродинамике Максвелла. Однако такие явления как излучение нагретых тел, фотоэффект, закономерности в спектрах атомов металлов не вписывались в ее рамки. Наука никак не могла найти теоретического обоснования периодического закона Д.И.Менделеева. В конце XIX века потерпела окончательное поражение теория мирового эфира. Скорость света оказалась постоянной и не зависящей ни от эфира, ни от скорости движения источника.
Классическая наука оказалась бессильной в объяснении природы рентгеновских лучей (1895), радиоактивности (1896) и электрона (1897). При исследовании радиоактивности обнаружилось невыполнение закона сохранения массы. В астрономии появился ряд фактов, противоречащих представлению о стационарности Вселенной. Американский астроном П.Ловелл (1855-1916), используя методы спектроскопии, заметил разбегание галактик и измерил скорости некоторых из них, однако наука XIX века не смогла дать объяснения этим фактам.
Нуждался в ревизии ряд гносеологических позиций классической науки. Как известно, она рассматривает поведение закрытых систем. Но рассмотрение любого объекта или системы в отрыве от их взаимосвязей с другими объектами или системами весьма условно. Исследуемая система всегда всего лишь часть некой другой, более сложной. Невзрачную роль «постороннего наблюдателя» классическая наука отводит и самому экспериментатору. Он, находясь за пределами исследуемой им системы, безучастно фиксирует, происходящие в ней события. Но в реальности, являясь частью сложной системы «наблюдатель-объект», он своим вмешательством безусловно оказывает влияние на последние.
Философский анализ сложившейся ситуации был дан в книге В.Ленина (1870-1924) «Материализм и эмпириокритицизм» (1909), в которой он отмечал, что сущность кризиса классической науки заключается в кризисе познания материи. Он пишет: «Сущность вещей или «субстанция» тоже относительны; они выражают только углубление человеческого познания объектов, и если вчера углубление этого познания не шло дальше атома, сегодня - дальше электрона и эфира, то диалектический материализм настаивает на временном, относительном, приблизительном характере всех этих вех познания природы прогрессирующей наукой человека. Электрон также неисчерпаем, как и атом, природа бесконечна... Все грани в природе условны, относительны, подвижны, выражают приближение нашего ума к познанию материи... Ум человеческий открыл много диковинного в природе и откроет еще больше, увеличивая тем свою власть над ней, но это не значит, чтобы природа была созданием нашего ума...». И в самом деле, не природа-создание нашего ума, а те модели природы, которые строит человек для ее объяснения. С углублением познания они усложняются и все же весьма приближенно описывают самое природу.
Для разрешения кризиса и истолкования новых явлений и фактов нужны были новые гипотезы, идеи и теории. И такие идеи появились. Это, прежде всего, гипотеза М.Планка (1858-1947) о квантах, с принятием которой наступил новый виток в развитии корпускулярно-волнового дуализма, идеи А.Эйнштейна (1879-1955) о природе пространства и времени, идеи Э.Резерфорда (1871-1937) и Н.Бора (1885-1962) о строении атома. Исход кризиса завершился рождением основополагающих для ХХ века парадигм - специальной и общей теории относительности, квантовой механики и построением квантово-релятивистской картины мира. Принятие их научным сообществом было связано с ломкой сложившихся в рамках механицизма традиционных стереотипов мышления, разработкой новых образцов мышления и новых мировоззренческих подходов к описанию реальности. В этом и заключалась крупнейшая по своим масштабам революция в естествознании на рубеже XIX - XX веков.
Ведущие идеи:
- научно-техническая революция и построение механической картины мира;
- становление классического детерминизма;
- влияние успехов физики на развитие других областей естествознания;
- становление тепловой и электромагнитной картин мира;
- выход на новый уровень исследований по химии и биологии;
- завершение классической науки;
- становление представлений о фундаментальности случайного и вероятностном характере причинно-следственных отношений.
2.2.3 НЕКЛАССИЧЕСКАЯ НАУКА
1. Релятивистская картина мира
Теория относительности или релятивистская (лат. relativus - относительный) механика перевернула представления о пространстве, времени, строении материи и существенным образом повлияла на развитие научного мировоззрения. Сегодня она является общепризнанной теорией. Ее отцом по праву считают А.Эйнштейна (1879-1955).
В 1905 году он опубликовал статью «К электродинамике движущихся сред», идея которой заключалась в том, что при описании явлений природы нужно отказаться от ньютоновских понятий абсолютного пространства и абсолютного времени. А.Эйнштейн отказался от господствовавшей в то время теории мирового эфира, высказал и обосновал два постулата:
- Скорость света в вакууме одинакова во всех инерциальных системах отсчета (ИСО) и равна 108 м/с.
- Законы природы и выражающие их уравнения инвариантны во всех ИСО.
Эти постулаты легли в основу специальной теории относительности (СТО). Cправедливости ради следует отметить, что почва для ее рождения готовилась физикой всю вторую половину XIX века. Ее математический аппарат был заложен в работах немецкого математика и физика, Г.Минковского (1864-1909) и А.Пуанкаре (1854-1912) - крупнейшего французского математика, физика и философа. Значительный вклад в ее становление внесли американец А.Майкельсон (1852-1931), англичанин Фицджеральд (1851-1901) и нидерландский физик Г.Лорентц (1853-1928). Майкельсон измерил скорость света и доказал ее постоянство. Она оказалась равной ~ 300 000 км/с. Это огромная скорость по сравнению со всеми наблюдаемыми в природе скоростями. Например, скорость современного самолета ~ 0,5 км/c, орбитальная скорость движения Земли ~ 30 км/с. Фицджеральд и Лорентц объяснили результаты опытов Майкельсона и предложили гипотезу о сокращении линейных размеров тел, движущихся с околосветовыми скоростями. Но лишь глубокая интуиция и понимание физической природы реальности, присущие А.Эйнштейну, помогли ему связать физику с геометрией и сформировать представления о пространстве, времени и гравитации, отличные от классических.
В СТО пространство и время связаны через движение, а положение тела описывается четырьмя координатами: x, y, z, t. Теперь уже речь идет не просто о пространстве или просто о времени, а о «пространстве-времени», которое характеризуется величиной, называемой интервалом, и связывающей пространственные расстояния и промежутки времени, разделяющие два события. Интервал является инвариантом.
Свойства объектов (масса, длина) и время протекания процессов зависят от скорости движения системы отсчета, в которой находится объект или протекает процесс. С увеличением скорости тел возрастает их масса, а линейные размеры в направлении движения сокращаются, замедляется время протекания процессов (Рис. 4). Одновременность двух событий, протекающих в разных ИСО относительна. Иной, чем в классической механике вид имеет и закон сложения скоростей.
Уравнения СТО, описывающие движение тел со скоростями, близкими к скоростям света, составляют основу релятивистской механики. При малых скоростях движения v << c, эти уравнения переходят в уравнения классической механики. В этом проявляется важнейший методологический принцип естествознания - принцип соответствия, выражающий требование преемственности знаний при переходе от более сложных моделей мира к более простым.
Y
l (СТО) m, t (СТО)
m, l, t (классическая механика)
V
Рис. 4 Зависимость m, l, t от скорости движения тела в классической и релятивистской механиках
СТО, раскрыв взаимосвязь пространства и времени между собой, не смогла ответить на вопросы о том, как связаны они с телами, находящимися в пространстве, и полями тяготения. Процесс поиска ответа на эти вопросы завершился построением общей теории относительности (ОТО). Оказалось, что сами материальные тела, их распределение в пространстве и движение полностью определяют геометрию пространства и свойства времени. Вблизи массивных тел силовые линии гравитационного поля искривляются и пространство становится римановым. Принцип относительности в ОТО приобретает еще более общую форму: движение тел в неинерциальной системе отсчета подчиняется тем же законам, что и движение в инерциальной системе в присутствии гравитационного поля.
Большинство выводов ОТО пока невозможно достаточно полно подтвердить, их доказательство находится либо за пределами точности современной измерительной аппаратуры, либо относится к космическим объектам, которые пока не удалось обнаружить. Современная наука сумела поставить лишь несколько подтверждающих экспериментов. Попытки теоретических расчетов также в ряде случаев дают противоречивые результаты. Например, модельные расчеты полей тяготения для материальной точки и шара показали, что эти тела создают вокруг себя поле, энергия которого равна нулю.
Для того, чтобы снять это противоречие, Эйнштейну пришлось ввести допущение, что гравитационное поле не имеет энергии в отдельной точке пространства, она как бы принадлежит всему полю в целом. На сегодняшний день нет сколько-нибудь достойной гипотезы, способной полностью разрешить это противоречие.
В рамках ОТО Эйнштейном была установлена эквивалентностьмежду инертной и тяготеющей массами, между массой и энергией и получено уравнение, связывающее их:
E = mc2.
Масса и энергия проявляются одна через другую. И в элементарных актах превращения они могут переходить одна в другую. Такая интерпретация позволяет объяснить кажущееся невыполнение закона сохранения массы при радиоактивном распаде, когда масса распадающейся частицы оказывается большей, чем сумма масс образовавшихся частиц. Очевидно, здесь необходимо говорить не о законах сохранения массы или энергии, а о законе сохранения массы - энергии.
Несмотря на то, что наука пока не имеет фактов опровергающих выводы теории относительности, необходимо понять, что это тоже физическая модель, которая имеет определенные ограничения. Ее выводы справедливы в макромире. Но что произойдет, если ее положения перенести на микромир? Не придется ли вводить некую фундаментальную длину L - своеобразный квант пространства? Если это окажется возможным, то не придется ли вводить и квант времени L/c ? Существование этих квантов поставит предел делимости материи и ограничение точности измерений пространственных размеров и временных интервалов.
2. Квантово-полевая картина мира
Разрешение затруднений классической физики в описании явлений микромира было связано с осознанием ограниченности применения ее моделей для этой области, необходимости смены аксиоматического аппарата и разработки новых методов исследования. Завершилось оно рождением новой механики - квантовой - теории, устанавливающей способ описания и законы движения микрочастиц во внешних полях.
Первой важной вехой в ее становлении стала квантовая гипотеза Планка-Эйнштейна: свет излучается, распространяется и поглощается квантами, энергия которых определяется выражением
E = hn,
где n - частота излучения, h= 6,62*10-34 Дж*с - постоянная Планка.
Сочетание этой гипотезы с методами классической науки позволило построить непротиворечивую теорию фотоэффекта и объяснить закономерности в спектрах нагретых тел.
Вторым важным моментом в становлении новой физики стала теория атома водорода, разработанная Н.Бором. Принятая в начале века планетарная модель представляла атом водорода как систему, состоящую из тяжелого ядра и вращающегося вокруг него легкого электрона. Как известно из механики, любая частица, движущаяся по круговой орбите, обладает ускорением. В то же время, исходя из электромагнитной теории, заряд, движущийся ускоренно должен излучать энергию. Из-за потери энергии радиус его орбиты должен уменьшаться, а траектория движения иметь вид спирали. Через промежуток времени 10-9с электрон упадет на ядро, и атом как самостоятельная химическая единица перестанет существовать. Однако большинство химических элементов стабильно, благодаря чему и существуют устойчивые неорганические и органические соединения, планеты, строения и сооружения, разнообразные биологические формы и сам человек. Кроме того, при движении электрона по спирали его излучение должно было бы иметь сплошной спектр. Наблюдаемые же в эксперименте спектры атомов дискретны и представляют серии узких спектральных линий. Для преодоления этих противоречий Бору пришлось ввести два постулата и понятия «стационарная орбита» и «стационарное состояние», существование которых подтвердили проведенные в 1913 году опыты Франка и Герца:
- Большую часть времени электроны в атомах находятся на стационарных орбитах, при движении по которым они не излучают и не поглощают энергии.
- Излучение или поглощение происходит при переходе электрона с одной стационарной орбиты на другую, при этом выполняется условие:
n=(E2-E1)/h,
где Е2 и Е1, соответственно энергии стационарных состояний.
Для построения непротиворечивой теории спектра атома водорода достаточно было знать законы квантования энергий, моментов количества движения и правила, разрешающие тот или иной переход (правила отбора). Однако для построения теории излучения многоэлектронных атомов этого оказалось недостаточно. Необходимо было знать, какие законы управляют распределением электронов по энергетическим состояниям. Понимание этого пришло лишь после открытия спина электрона (англ. spin - вращение, собственный момент количества движения микрочастицы) - собственного механического и магнитного моментов и законов их квантования. Это позволило охарактеризовать состояние электронов в атоме с помощью набора квантовых чисел, определяющих возможные дискретные (квантованные) значения энергии, орбитального и спиновых моментов, а также найти их распределение по стационарным орбитам (или уровням).
В 1925 году швейцарский физик-теоретик В.Паули (1900-1958) обосновал принцип: в любой квантовой системе два или более электрона не могут одновременно находиться в одном и том же квантовом состоянии. Это фундаментальный закон природы, ему подчиняются все частицы с полуцелым спином, к которым относится электрон. Совместное действие закона минимума энергии и принципа Паули определяет закономерности заполнения электронных оболочек атомов, периодичность их свойств, валентность и реакционную способность.
Формирование новых представлений о природе корпускулярно - волнового дуализма завершило подготовительный этап в развитии квантовой физики. В 1924 году француз Луи де Бройль (1892-1987) пришел к мысли о том, что сочетание волновых и корпускулярных свойств является фундаментальным свойством материи и присуще не только излучению (полю), но и веществу. С любым движущимся материальным объектом можно сопоставить корпускулярные характеристики - координаты в пространстве (т.е. траекторию), энергию, импульс, и волновые - длину волны или частоту. Для характеристики движущегося объекта могут быть использованы выражения, считавшиеся ранее справедливыми только для фотона:
E = hn; р = E/c; l = h/p = h/mv,
где р- импульс объекта.
Если применить эти выражения к летящему теннисному мячу, то сопоставимая ему длина волны окажется равной 4,6*10-34м. Попробуйте измерить такую длину волны! Никакая даже современная техника (не говоря уж о технике двадцатых годов) не может этого сделать. Поэтому гипотеза де Бройля показалась современникам сумасшедшей даже по сравнению с идеями теории относительности. Электрон, который все считали шарообразной микрочастицей с зарядом 1,6*10-19Кл, оказывается и вовсе не частица, а волна. Он не имеет определенной траектории, как же тогда можно говорить об электронных орбитах?
Разрешение этой парадоксальной ситуации привело Н.Бора к открытию принципа дополнительности:
Ни одна теория не может описать объект столь исчерпывающим образом, чтобы исключить возможность альтернативных подходов. «Несовместимости» с точки зрения классической науки в рамках неклассической не исключают, а дополняют друг друга.
Эти «несовместимости» представляют не реализуемые друг без друга две стороны одной медали.
В 1927 году американцами К. Дэвиссоном и Л. Джермером и независимо от них советским ученым П.С.Тартаковским волновые свойства электронов были обнаружены в эксперименте по дифракции электронов на кристаллических структурах. Экспериментально измеренная длина волны lэ = 1,23*10-10м совпала с большой точностью с рассчитанной по формуле де Бройля. Позднее будут обнаружены волновые свойства и у других микрочастиц.
Дальнейшие исследования в области микромира показали, что затруднения Бора были вовсе не случайными. Дело в том, что он в своей теории попытался объединить необъединяемое: квантование энергии и импульса электрона с представлением о нем как некоем заряженном шарике, движение которого по орбите подчиняется законом классической механики. Построение такого «кентавра» оказалось бесперспективным, но оно стимулировало ученых на пересмотр классических представлений о фундаментальных свойствах материи на уровне микромира. Микрочастицы сами по себе не являются ни корпускулами, ни волнами, ни их симбиозом. Их просто невозможно представить наглядно. Но это не мешает нам использовать условные модели и математические абстракции для объяснения их свойств - массы, спина, энергии, импульса, времени жизни и других. Микрочастицы имеют потенциальную способность проявлять корпускулярные или волновые свойства в зависимости от условий наблюдения. Наблюдая их треки в камере Вильсона, мы можем охарактеризовать корпускулярные свойства микрочастиц. Наблюдая их дифракцию на различных структурах, мы можем охарактеризовать их волновые свойства.
Исторически первой квантовой теорией была матричная механика немецкого физика В.Гейзенберга (1901-1976). Но наиболее широкое распространение для описания микромира получило уравнение австрийца Э.Шредингера (1887-1961), который, используя гипотезу де Бройля и ряд других соотношений, разработал волновую (квантовую) механику, доказал ее идентичность с матричной механикой Гейзенберга, вывел дифференциальное уравнение, описывающее характер поведения электрона в атоме. При этом ему пришлось ввести так называемую волновую функцию Y = Y(x,y,z, t), физический смысл которой был истолкован позднее М.Борном (1882-1970): квадрат модуля волновой функции IYI2 пропорционален плотности вероятности нахождения частицы в данной точке объема. То есть волны де Бройля - это не волны в классическом смысле, их нельзя представить в виде механических или электромагнитных, это волны вероятности. Уравнение Шредингера имеет вид:
НY(x,y,z, t) = ЕY(x,y,z, t),
где Н - функция, которая в квантовой физике называется «оператор» (преобразователь), Е - «собственное» значение энергии электрона. Волновая функция лишь вероятностно описывает поведение электрона в атоме. Вместо классической орбиты электрона рассматривается своеобразное «электронное облако», плотность которого в пространстве распределяется пропорционально IYI2. Она симметрична по отношению к перестановке так называемых тождественных частиц. При перестановке частиц с полуцелым спином (электронов, протонов) она меняет знак, то есть, асимметрична, при перестановке частиц с целым спином она симметрична.
IYI2
0,59 r, A
Рис.5 Распределение электронной плотности в атоме водорода (основное состояние)
Вид распределения электронной плотности зависит от состояния электрона. В атоме водорода (в основном состоянии) оно имеет вид, приведенный на рис. 5. Максимум электронной плотности приходится на область, соответствующую радиусу первой боровской орбиты, а нахождение электрона внутри сферы радиусом r=0,59A (1A=10-10м) является наиболее вероятным. У более сложных атомов оно существенно отличается от приведенного, а форма электронного облака - от сферической.
Вероятностная трактовка волновой функции отражает присущие микрочастицам элементы случайного в их поведении. Это значит, что предсказания в квантовой механике, в отличие от классической, имеют вероятностный характер, а случайность поведения присуща не только коллективу частиц, но и одной, отдельно взятой частице.
Эта специфика проявляется в фундаментальном законе, открытом в 1927 году Гейзенбергом - соотношениях неопределенности, смысл которых заключается в том, что
невозможно одновременно с одинаковой точностью определить координату и импульс (скорость) или энергию и время взаимодействия частиц:
Dp*Dx ³ h/2p ,
DЕ*Dt ³ h/2p ,
где величина D и отражает неопределенность (погрешность) в определении характеристики микрочастицы. Исходя из него необходимо учитывать, что величины координат и импульсов (или энергии и времени взаимодействия) сосредоточены в некоторой области значений Dp и Dх, в которой распределены по вероятностному закону. Это утверждение имеет еще одно название - принцип неопределенности.
Несмотря на то, что все законы микромира носят вероятностный характер и могут быть сформулированы только на языке распределений, они очень точно предсказывают течение ядерных процессов и их результат.
Рассматривая вероятностный характер поведения микрочастиц, современная наука пришла к выводу, что именно статистические, а не динамические закономерности являются фундаментальными. Это значит, что фундаментальность динамических закономерностей проявляется только в рамках механической картины мира. Законы сохранения не отменяют вероятностной природы процессов, они лишь формируют условия, при которых вероятность протекания определенных процессов равна нулю. Например, сохранение массы, импульса, энергии, заряда и других величин жестко выполняется только в закрытых системах. В квантовой механике яркой иллюстрацией этому являются правила запрета для энергетических переходов (правила отбора). Правила отбора и свойства объектов определяют характер спектров в радиоволновой, оптической и рентгеновской областях шкалы электромагнитных волн.
Применение принципа неопределенности к квантовым системам позволило объяснить такие необъяснимые с точки зрения классической физики явления как туннельный эффект (просачивание a-частиц сквозь потенциальный барьер) и ряд других. Более того, его философское осмысление показало, что случайность и неопределенность есть фундаментальное свойство природы и присуще всему, начиная от элементарных частиц до одухотворенной деятельности человека.
Гейзенберг первым поставил вопрос о влиянии наблюдателя, приборов и условий на производимый эксперимент, полученные в его ходе результаты и их интерпретацию. Если классическая физика понимает роль экспериментатора как стороннего наблюдателя, то в квантовой механике он является составной частью системы, в которой наблюдается явление, и принципиально неотделим от объекта наблюдения. Он не просто «созерцатель» событий, происходящих в исследуемой системе, он их активный участник. Используя измерительные приборы, он, пусть и незначительно, но вмешивается в ход протекающих событий. И не учитывать этого нельзя.
В процессе становления квантовой механики удалось установить некоторые фундаментальные принципы, отражающие закономерности природы и принципы, позволяющие найти соотношения между новой и старой картинами мира (принцип дополнительности, принцип соответствия, принцип неопределенности и др.). Квантовая механика смогла объяснить электронную структуру химических элементов и спектральные закономерности, обосновать периодическую систему, построить теорию химической связи, стать базой для развития квантовой химии и фотохимии. Под ее влиянием сформировались новые направления синтетической химии, сложились новые представления о строении жизненно важных биополимеров и их метаболизме ( превращении) в живых организмах. Она подвела к пониманию принципиального отсутствия абсолютного знания и внешнего абсолютного наблюдателя, к признанию его частью развивающейся системы, и существенно повлияла на представление о причинно-следственных связях, заложенное в классическом детерминизме.
Рождение квантовой механики было сложным и трудным. Ее понятия, представления и абстракции нелегко давались и самим ученым. Об этом свидетельствуют их собственные многочисленные воспоминания о том, как мучительно шел процесс становления знаний, поисков философских обоснований теории и смены мировоззрения. Планк, выдвинувший квантовую гипотезу, до конца жизни тяготился ею и пытался искать компромиссные варианты. Эйнштейн, сомневаясь в вероятностном характере поведения микрочастиц, утверждал: «бог не играет в кости», Шредингер, получивший свое знаменитое уравнение, поначалу затруднялся объяснить физическую суть волновой функции. Гейзенберг до последних дней пытался найти «мировую формулу» - уравнение, из которого можно получить весь спектр свойств элементарных частиц.
Вслед за рождением квантовой механики последовал целый каскад принципиальных изменений в других областях естествознания, в основу которых были заложены новые представления о структуре микромира. В химии - это, прежде всего, квантовая химия, в биологии - новый виток в развитии молекулярной биологии и молекулярной генетики. Развитие идей квантовой механики способствовало появлению и развитию новой экспериментальной техники и новых теоретических методов исследования строения вещества (молекулярная, атомная и ядерная спектроскопия, квантовая теория проводимости, нелинейная оптика и т.д.). Благодаря квантовой механике на новую ступень поднялась ядерная физика, что имеет огромное значение для жизни человечества: это возможности использования энергии ядра, поиски путей получения энергии за счет термоядерных реакций. Но у достижений квантовой механики есть и другая сторона. Ее исследования напрямую способствовали разработке ядерного и термоядерного оружия, оружия такой разрушительной силы, которая в один момент способна разрушить мировую цивилизацию.
3. Строение материи и физика элементарных частиц
Проблема поиска «первокирпичиков» Мироздания занимала ученых и философов со времен античности. Но по-настоящему заняться ее решением оказалось возможным только в ХХ веке, когда были разработаны для этого экспериментальная техника и математический аппарат. Развитие физики элементарных частиц позволило разработать протонно-нейтронную теорию строения ядра атома (Д.Д.Иваненко, В.Гейзенберг). Ядро, как и атом, оказалось сложной системой взаимодействующих элементарных частиц.
Сегодня выделяют четыре уровня организации микромира: молекулярный, атомный, нуклонный и кварковый. Достижения современной физики позволили выделить его структурные элементы - элементарные частицы. Элементарными называют такие частицы, которые на современном уровне развития науки нельзя считать соединением других, более простых частиц. Однако в настоящее время неизвестно, какие частицы в действительности заслуживают названия элементарных, неизвестен критерий, по которому ту или иную частицу можно отнести к этому статусу. Поэтому элементарными условно называют группу микрочастиц, не являющихся атомами или атомными ядрами. В сороковые-пятидесятые годы нашего века было открыто достаточно большое количество элементарных частиц при исследовании космических лучей, а затем, по мере строительства ускорителей, и в искусственных условиях. На сегодня обнаружено несколько сотен частиц, но лишь около 30 из них можно считать более или менее стабильными (имеющими время жизни ~ 10-22с), а истинно элементарными еще меньше. Элементарные частицы образуют некое взаимосвязанное сообщество. Существование какой-либо одной из них связано с наличием других.
В основу классификации элементарных частиц положено несколько свойств и, прежде всего: масса, время жизни, спин, заряд. По массе частицы объединены в группы: легкие (лептоны), средние (мезоны) и тяжелые (барионы). Средние и тяжелые частицы получили название адронов. На сегодняшний день из них лишь лептоны считаются истинно элементарными частицами, так как пока нет ни теоретических, ни экспериментальных данных, которые бы свидетельствовали о наличии у них какой-либо тонкой структуры. Все лептоны участвуют в слабых взаимодействиях, а лептоны, обладающие электрическим зарядом - к тому же еще и в сильных.
Среди микрочастиц специально выделяют те, которые имеют время жизни, значительно меньшее 10-22 с. Их называют резонансами. Различают частицы реальные, то есть те, которые можно непосредственно зафиксировать с помощью приборов (как правило, они имеют большое время жизни- электрон, протон, нейтрон и др.) и частицы виртуальные (возможные), о существовании которых можно судить лишь опосредовано, по некоторым их проявлениям через какие-то вторичные эффекты. Согласно квантовой теории поля все взаимодействия осуществляются благодаря обмену виртуальными частицами (например, электромагнитные взаимодействия осуществляются с помощью виртуальных фотонов, ядерные- с помощью виртуальных глюонов и т.д.). В уравнениях, описывающих взаимодействия, они есть, экспериментально же их наличие в этих взаимодействиях пока никто не зафиксировал. Почти все частицы имеют соответствующие им античастицы.
Эксперименты по глубокому неупругому (т.е. с большой отдачей импульса) рассеянию электронов на протонах, проведенные в конце шестидесятых годов, показали, что внутри протонов имеются области отрицательного заряда. Вскоре стало ясно, что это фундаментальные частицы, из которых состоят все адроны. Их назвали кварками. Расчеты показали, что кварки имеют дробный электрический заряд по отношению к заряду электрона (в классической физике заряд электрона считается самым минимальным из существующих в природе). Раздел физики, изучающий кварки, получил название квантовой хромодинамики. На сегодняшний день известно шесть кварков. Они как и лептоны считаются истинно элементарными частицами. Физики считают, что из этих двух видов частиц можно построить все остальные, то есть можно считать их «первокирпичиками». Однако пока никто не сумел зафиксировать кварк в свободном состоянии. Все, что знает о них наука - результат теоретических расчетов и косвенных измерений.
Исходя из значения спина, все частицы делят на фермионы (в честь Э.Ферми - одного из создателей ядерной и нейтронной физики), имеющие полуцелый спин, и бозоны (в честь Ш.Бозе - одного из создателей квантовой статистики), имеющие целый спин.
К фермионам относится множество частиц, среди которых электроны, протоны, нейтроны. Распределение фермионов подчиняется строгому правилу, которое получило название принципа Паули: в одной квантовой ячейке не могут находиться частицы, имеющие одинаковые квантовые состояния. Возбужденные состояния силовых полей называют фундаментальными бозонами. Таких состояний насчитывается тринадцать. В отличие от фермионов бозоны не подчиняются запрету Паули. Элементарные бозоны являются переносчиками всех видов фундаментальных взаимодействий, каждому из которых соответствует свой вид бозона: гравитационному - гравитон, электромагнитному - фотон, ядерному - глюон, слабому - тяжелый бозон.
Однако исследования в этой области сталкиваются с неимоверными трудностями. Фактически поставлен предел экспериментальным возможностям нахождения еще более элементарных частиц, которые можно считать первокирпичиками. Поэтому в современной физике центр тяжести исследований со структуры материи переносится на исследование взаимосвязей и взаимодействий частиц.
Изучая явления микромира, физики пытаются найти взаимосвязь между разными видами взаимодействий и построить их объединенную теорию. Еще Эйнштейн предполагал возможность объединения электромагнитных взаимодействий с гравитационными. В семидесятых годах нашего столетия была высказана гипотеза, что электромагнитное поле является частью более общего электрослабого поля, состоящего из нескольких компонент.
Предполагается, что некоторые элементарные частицы излучают и поглощают кванты электрослабого поля, и многочисленные опыты это подтверждают, хотя идея не считается полностью доказанной. Были высказаны гипотезы о том, что на расстояниях 10-18 м слабые взаимодействия объединяются с электромагнитными, а на расстояниях - 10-32 м электрослабые взаимодействия объединяются с сильными. Может быть это и так, но ученые пока не умеют работать со столь малыми расстояниями.
Новые представления о структуре материи и объединении взаимодействий ученые связывают с динамическим (физическим) вакуумом. По классическим представлениям вакуум - это абсолютная пустота. Но таковой не бывает. Не зря говорят «природа не терпит пустоты». Если даже из сосуда удалить все вещество, которое в нем находится, то при этом все-таки не получится классической пустоты. Отсутствие вещества еще не означает отсутствия поля. Современная наука трактует вакуум как состояние материи с наименьшей энергией при отсутствии вещества (то есть вакуум - это невозбужденное состояние поля). Вследствие случайных процессов возможны слабые флуктуации (нулевые колебания) этого состояния. Соотношение неопределенностей говорит о том, что на короткое время
Dt ~ h/2pDЕ
любая система может перейти в состояние, отличающееся на DЕ по энергии. Такие переходы называют виртуальными. Виртуальные переходы в вакууме соответствуют рождению виртуальных частиц время жизни которых ~ 10-30 с. При определенных условиях они способны превращаться в реальные. Рождение виртуальных частиц из вакуума возможно даже при низких температурах. То есть поле способно трансформироваться в вещество. С другой стороны, мы знаем примеры превращения вещества в поле. Аннигиляция (лат. annihilatio- уничтожение исчезновение) пар некоторых элементарных античастиц рождает кванты силовых полей.
Динамический вакуум - это пространство, заполненное случайно возникающими и исчезающими виртуальными частицами, число которых тоже случайно. Наличие виртуальных частиц оказывает влияние на поведение реальных частиц, причем, чем легче частица, тем большее значение для нее играет вакуум. Например, в атомной физике эффект его влияния незначителен. Из-за взаимодействия с виртуальными фотонами уровни энергии электрона в атоме смещаются всего лишь на доли процента. Но квантовая электродинамика может этот сдвиг рассчитать, причем расчетные данные находятся в хорошем согласии с экспериментом. Внутри ядер атомов влияние виртуальных частиц играет более существенную роль. А на уровне кварков действие физического вакуума уже является решающим. Ученые полагают, что невозможность существования свободных кварков, по всей вероятности, связана именно с колоссальными изменениями, которые одиночный кварк вызывает в вакууме.
Некоторые ученые полагают, что физический вакуум и есть та праматерия, которая в определенных, неизвестных пока нам условиях, способна порождать стабильные элементарные частицы и легкие атомы, давая начало той материи, которая воспринимается нашими органами чувств.
4. Соотношение классической, релятивистской и квантовой картин
Классическая механика обнаружила пределы своих возможностей в объяснении атомных и молекулярных спектров, поведения теплоемкости твердых тел, движения тел со скоростями, соизмеримыми со скоростью света, и других явлений. Для их описания были созданы новые системы определений, понятий, аксиом, постулатов, которые легли в основу квантовой и релятивистской механик - новых моделей описания природы. К классическим концептуальным системам физики присоединились неклассические. Но это не простое объединение, оно связано с ломкой старых и возникновением новых представлений о пространстве, времени и причинности. Оно изменило образ физической мысли. В результате этого объединения произошла смена парадигмы физической науки.
Но это не значит, что законы классической механики оказались несправедливы. Вот что по этому поводу пишет В.Гейзенберг в своей классической работе «Физика и философия»: «Всюду, где понятия механики Ньютона могут быть применены для описания процессов природы, законы, сформулированные Ньютоном, также являются справедливыми и не могут быть улучшены. Электромагнитные же явления не могут быть должным образом описаны с помощью системы понятий ньютоновской механики. Поэтому эксперименты над электромагнитными полями и световыми волнами совместно с их теоретическим анализом, проведенным Максвеллом, Лоренцом и Эйнштейном, привели к новой замкнутой системе определений, аксиом и понятий, к системе, являющейся также непротиворечивой и замкнутой, что и система ньютоновской механики, хотя она существенно отлична от системы Ньютона».
Это значит, что не только классическая механика, но и вся классическая наука имеет границы применимости, в рамках которых она была и остается полностью справедливой. На основе классической механики работают все машины и механизмы, строятся здания и сооружения. Классическая термодинамика лежит в основе работы тепловых двигателей, классическая электродинамика - в основе работы электрических установок. И совсем ни к чему при исследовании явлений макромира (например, движения автомобиля по дороге или работы электродвигателя) использовать представления релятивистской или квантовой физики. В условиях макромира эти эффекты будут настолько малы, что у нас не найдется приборов, чтобы их измерить, и более того, такие малые эффекты не повлияют на характер движения макротел.
Классическая механика является частным случаем других более сложных моделей и при определенных условиях соотношения релятивистской или квантовой механики переходят в соотношения классические, то есть новые теории, претендующие на более широкую область применимости, чем старая, включают последнюю в качестве предельного случая, т.е выполняется принцип соответствия.
Однако и неклассическая наука не может ответить на множество вопросов, связанных с пределами познаваемости мира, единства разных типов взаимодействий, пределом делимости материи и многих других. По сравнению с классической наукой она расширила пределы познания, перевела его на новый, более сложный уровень, но, как и классическая наука, она оказалась ограниченной и бессильной в создании подлинно единой научной картины мира. К середине ХХ столетия оформились отдельные ее части, взаимосвязь между которыми просматривалась лишь на уровне общефилософских идей о развитии. Мощный всплеск интегративных тенденций в науке, ускорение процессов междисциплинарного синтеза в поисках механизмов взаимосвязи природы, человека и общества и общих закономерностей их развития стали подножием для становления постнеклассической науки, сформировавшей новые познавательные модели, в рамках которых стало возможным описать мир как единую развивающуюся суперсистему.
5. Постнеклассическая наука
В первой трети ХХ столетия механистическое мировоззрение, исходящее из представлений о линейности, определенности и однозначности причинно-следственных связей, редукции любого сложного объекта к сумме более простых исходных элементов и выведения из них различных комбинаций всех свойств объекта, потерпело окончательное поражение. Это обнаружилось не только в описании биологических и социальных явлений, но и в фундаменте естествознания - физике. Основанная на античных традициях поиска первокирпичиков Мироздания, она изучала, главным образом, структуру и свойства объекта, наиболее существенные взаимосвязи между его отдельными элементами. Однако объекты природы нельзя представить в виде простой суммы отдельных элементов, они гораздо сложнее. К описанию их поведения не всегда применимы классические модели и представления, ибо мир является неделимым целым, сетью отношений, сетью взаимосвязанных и взаимообусловленных процессов, которые затрудняется познать и адекватно описать не только классическая, но и неклассическая наука. Более того, была выявлена масса противоречий, которые с их точки зрения кажутся неразрешимыми. Так, используя модель закрытой системы, II начало термодинамики и представления об энтропии, классическая наука может объяснить лишь, как из порядка возникает хаос, чем обусловлены взрывы звезд, разрушение планет, старение и смерть организмов, распад цивилизаций. Эта направленность процессов связывается с ростом энтропии в изолированных системах и стремлением ее к некоторому максимуму, при котором система переходит в состояние хаоса. Но в окружающем мире наряду с процессами деградации идут и процессы созидания порядка из хаоса, процессы связанные с самопроизвольным уменьшением энтропии. Как получается, что система самопроизвольно переходит из состояния хаоса, наиболее вероятного и выгодного с энергетической точки зрения, в состояние порядка, менее вероятного и менее выгодного (с более высокой энергией)? Как и за счет чего происходит ее самоорганизация (самоупорядочение)? Разработанные классической и неклассической наукой познавательные модели не могли ответить на эти вопросы. В очередной раз естественные науки оказалась в тупике, и были поставлены перед необходимостью перехода к новым качественным представлениям об окружающем мире. Другая важнейшая причина поиска нового подхода к его изучению лежит в области современной техники - проблем разработки средств получения, хранения и передачи информации, создания различных систем управления, регулирования, планирования, их компьютерного обеспечения и т.д.
Отказ от механистической методологии и практические нужды общества потребовали поиска новых концепций и идей, учитывающих принципиальную сложность исследуемых объектов и ориентированных на познание их целостности и системных качеств. В числе первых научных дисциплин, поставивших эту проблему стали экономика, биология, психология и лингвистика. Но подходы к ее решению были найдены при исследовании поведения физических и химических систем. В процессе разрешения этой проблемы и сформировалась постнеклассическая наука. Она акцентирует внимание на исследовании всей совокупности иерархий систем Мироздания как взаимосвязанной целостности или сети взаимодействующих элементов. Объект ее исследования - процессразвития, общие принципы самоорганизации и эволюции сложных систем разного уровня и разной природы, особенности смены их качественных состояний, механизмы, динамика и пространственно-временная развертка этого процесса.
Однако на пути понимания и описания сложного наука столкнулась с существенными трудностями, которые заключались в отсутствии понятийного аппарата, необходимых средств и методов исследования, неразработанностью лежащих в их основе исходных философских и логико-методологических положений. И, несмотря на грандиозные успехи в этом направлении эти трудности во многом остаются до сих пор неразрешенными.
К числу важнейших постнеклассических концепций, которые находят свое приложение практически во всех областях знания и деятельности, следует отнести теорию систем, теорию информации, теорию самоорганизации и теорию управления. Эти концепции имеют выдающееся значение для современной теории познания, составляют методологическую основу интеграции разнопредметных знаний в описании единства мира и способов его постижения, являются базой для понимания общности механизмов развития природных, социальных и технологических систем, оказываются крайне важными для осознания необходимости коэволюции природы, общества и культуры в обеспечении устойчивого развития человечества.
Новые понятия и термины: релятивизм, постулат, интервал, квант, стационарное состояние, правила отбора, квантовое число, спин, волновая функция, плотность вероятности, оператор, соотношения неопределенности.
Ведущие идеи:
- зависимость свойств объектов (масса, размеры) и времени протекания процессов от скорости движения системы отсчета, в которой находится объект или протекает процесс;
- взаимосвязь тяготения и геометрии пространства;
- эквивалентность массы и энергии;
- принцип дополнительности как важнейший методологический принцип познания;
- вероятностность поведения характерна не только для коллектива частиц, но и для одной, отдельно взятой элементарной частицы;
- все законы микромира носят статистический характер;
- случайность и неопределенность есть фундаментальное свойство природы,
- в исследовании структуры вещества наступил предел экспериментальных возможностей науки в обнаружении еще более элементарных частиц;
- рождение постнеклассической науки.
.
Ваш комментарий о книге Обратно в раздел Наука
|
|