Библиотека

Теология

Конфессии

Иностранные языки

Другие проекты







Ваш комментарий о книге

Дубнищева Т. Концепции современного естествознания. Учебное пособие

ОГЛАВЛЕНИЕ

Глава 6 КОНЦЕПЦИИ ВЗАИМОДЕЙСТВИЙ И СТРУКТУР В МИКРОМИРЕ
6.1. Описание движения микрочастиц. Принципы дополнительности и причинности

Микромир — невидимый мир микрообъектов: атомов, электронов, нейтронов, протонов и пр. Он не может быть описан понятиями и принципами классической физики, которые в некоторой мере соответствуют наглядным представлениям (как в гл. 5). Классическая физика признает наличие материи как в виде вещества, так и поля. Но она не допускает объектов, обладающих свойствами и поля, и вещества. Подчеркивая кажущуюся противоречивость свойств микрообъектов, у которых эти свойства дополняют друг друга, Н.Бор выдвинул принцип дополнительности (1927).
При одном описании или наблюдении за поведением микрочастицы удобнее представлять ее волной, а при другом — частицей. Единая картина синтезирует эти описания. После доказательства волновых свойств электрона и «полного успеха» корпускулярно-волнового дуализма вещества необходимо было подвести теорию к объяснению явлений. Идея о волновых свойствах электронов оказалась очень плодотворной. Для создания механики микрочастиц нужно было сформулировать ее основной закон (в классической науке таков закон динамики Ньютона). Для макрообъектов длина волны де Бройля, равная мала, и их движения можно описать законами классической механики как волновые процессы, характеризующиеся волновой функцией . Но когда длиной волны де Бройля нельзя пренебречь, закон движения микрообъектов должен быть аналогичен волновому уравнению в оптике: . Австрийский физик Э. Шредингер, опираясь на аналогию оптико-лучевого и оптико-волнового описаний, обобщил гипотезу де Бройля для случая, когда электрон движется не в свободном пространстве, а во внешнем поле. Английский математик У. Гамильтон, ранее выразивший идею об оптико-механической аналогии, показал, что задачу классической механики можно формально записать как задачу геометрической оптики. Тогда в приведенном выше уравнении для фазы вместо  надо поставить циклическую частоту волн де Бройля , а вместо скорости vскорость распространения поверхности равного действия  Тогда уравнение для частицы примет вид:
208

Здесь введен — оператор Лап-
ласа; (Е - U) — функция координат и времени, которая характеризует силовое поле, в котором движется микрочастица.
Волновая механика — вариант механики микромира, разработанный Шредингером. Уравнение Шредингера в микромире играет такую же роль, как уравнения Ньютона в классической механике. Его решение в отсутствие внешнего поля дает волны де Брой-ля. Уравнение Шредингера для волновой функции не может быть выведено из других соотношений, т.е. это — исходное предположение, справедливость которого доказывается тем, что вытекающие из него следствия согласуются с экспериментальными данными.
Дифференциальные уравнения с частными производными второго порядка имеют бесконечное множество решений. Необходимое частное решение находят при определенных условиях, соответствующих данной конкретной задаче. Шредингер решил уравнение для простейших квантовых систем — осциллятора, ротатора и т. п. При движении свободного электрона уравнение не накладывало никаких ограничений на его энергию — она может принимать любые значения, не квантуется. Шредингер трактовал  -функцию как величину, описывающую плотность частиц в реальном пространстве, и считал, что она отражает только волновые свойства частиц.
Для атома водорода Шредингер получил ряд дискретных значений энергии, что и соответствовало теории Бора. Он определил вид волновых функций и возможные значения энергии, сумев уйти от постулатов Бора в строении атома водорода. Целочисленность значений энергии получилась сама собой, как получается целое число узлов при рассмотрении колебаний струны. Из условия стремления к нулю -функции на больших расстояниях (быстрое ослабление удерживающего поля) можно найти решения уравнения Шредингера для связанных состояний. Для кулонов-ского потенциала атома водорода решение получается не для всех энергий, а для определенных дискретных значений, совпадающих с теми, что давала теория Бора. Тем самым прояснялся смысл правил квантования Бора— Зоммерфельда: допустимые значения энергии соответствуют требованию, чтобы в области движения частицы уложилось целое число волн де Бройля.
Хотя смысл -функции был еще не понятен, волновой формализм теории Шредингера приняли, поскольку он позволял решать сложные задачи разработанными методами математической физики, основанными на непрерывных функциях. Интересно высказывание Планка по поводу уравнения Шредингера и введения -функции: «уравнению придает основополагающее значение... новая методика, позволяющая с помощью математики преодолеть трудную квантово-теоретическую проблему. Это первый случай, когда квант действия, который до сих пор не поддавался
209

никаким попыткам подойти к нему с точки зрения физики непрерывного, удалось включить в дифференциальные уравнения». Смысл -функции был осознан лишь в 1926 г. М. Борном, и «волны материи» получили вероятностную интерпретацию. Об этом чуть ниже.
Но свойства -функции не сводились только к «волновым пакетам», что экспериментально доказали советские ученые Л. М. Биберман, Н. Г. Сушков и В. А. Фабрикант (1948). Пропуская пучок электронов чрезвычайно малой интенсивности через кристалл (фактически по одному), они получили на фотопластинке за кристаллом отдельные пятнышки, плотность распределения которых соответствовала распределению интенсивностей в дифракционной картине, которая была бы при большой плотности пучка электронов. Эти «пятнышки» демонстрировали дискретность электронов, а их распределение свидетельствовало о подчиненности их статистическим законам.
М. Борн с 1922 г. начал работать над теорией строения атома Бора, собрав в Геттингене одаренных молодых физиков-теоретиков из разных стран и воодушевив их на разработку новой, квантовой физики. По воспоминаниям Гейзенберга, благодаря Борну Геттинген, славившийся своей математической школой (традиции Гаусса, Римана, Вебера продолжали Клейн и Гильберт), стал центром атомной физики. Борн в книге «Физика в жизни моего поколения» писал: «Развитие квантовой механики показывает, что совокупность наблюдений и измерений медленно создает абстрактные формулы для их сжатого описания и что понимание их значения приходит впоследствии».
Матричная механика — другой вариант механики микромира, созданный В.Гейзенбергом, М.Борном, П.Дираком и П.Иорданом. В своей первой работе Гейзенберг пытался выработать основы атомной механики, построенной на связях между принципиально наблюдаемыми величинами без привлечения моделей. Он считал, что теория явлений микромира должна устанавливать соотношения между величинами, которые непосредственно наблюдаются в эксперименте (частота спектральных линий, поляризация и др.), а «ненаблюдаемые» (скорость, масса, ускорение, положение частицы) не должны быть в ней. Гейзенберг отказался от «представлений об электронных орбитах с определенными радиусами и периодами обращения, потому что эти величины не могли быть наблюдаемы».
Это достижение Гейзенберга и стало основой матричного варианта квантовой механики, для которой Борн разработал математический аппарат. Гейзенберг представил физические величины как совокупность всех возможных амплитуд перехода из одного квантового состояния в другие, так как при изучении спектральных закономерностей атом представлялся совокупностью вир-
210

туальных гармонических осцилляторов. Сама вероятность перехода пропорциональна квадрату модуля амплитуды, наблюдаемому в экспериментах. Тогда каждая величина должна иметь два индекса, соответствующих верхнему и нижнему состояниям. Эти величины называются матрицами. Гейзенберг получил и уравнения для наблюдаемых величин, но в первоначальном виде они были сложными. В 1926 г. он сумел объяснить отличие двух систем термов для пара- и ортогелия как соответствующих симметричным и антисимметричным решениям его уравнения.
Квантовая механика — теория движений в микромире, основанная на единстве матричной и волновой механики. Шредингер вскоре доказал их математическую эквивалентность. В квантовой механике нет разницы между описаниями частицы с помощью волновых и корпускулярных представлений. Вращающийся вокруг ядра электрон можно представлять в виде волны, длина которой определяется его скоростью. И там, где укладывается целое число длин волн электрона, они складываются, образуя разрешенную орбиту в планетарной модели строения атома Бора. Если же в орбиту не укладывается целое число волн, гребни их станут компенсировать впадины, такая орбита не будет разрешена. Уравнение Шредингера позволяет однозначно определить волновую функцию в любой момент времени, если известно ее значение в данный момент. Поэтому само уравнение вполне динамично. Но оно было написано еще до того, как стал понятен смысл этой функции.
Верную трактовку смысла волновой функции дал М.Борн в 1926 г. Обратившись к работам Эйнштейна по теории фотонов и проанализировав задачу о рассеянии частиц, он подошел к созданию формализма квантовой механики с позиции статистических методов. Он показал, что интенсивность -волн есть мера вероятности положения частицы в определенном месте.
Квадрат модуля -функции определяет вероятность dWтого, что частица будет обнаружена в объеме
 при этом полная вероятность обнаружения частицы во всем объеме, определяемая интегралом по объему, должна равняться (как достоверного события) единице:. Значит, квантовая механика носит статистический характер. Она позволяет найти лишь вероятность того, что координаты лежат внутри определенного интервала, -функция позволяет только предсказать вероятность обнаружения частицы В различных точках пространства. Как выразился Р.Фейнман, «приходится признать, что мы изменили нашим прежним идеалам понимания природы. Может быть, это шаг назад, но никто не научил нас, как избежать его».
Итак, микропроцессам свойственны не динамические, а статистические закономерности, тем самым в области микромира
211

причинность реализуется через многообразие случайностей и характер причинной связи в микромире отличается от детерминизма классической науки. Классическая наука, стремясь к объективности законов, фактически игнорировала случайность. В ней фигурировали только средние данные, но в реальных процессах всегда происходят случайные флуктуации (отклонения от средних), которыми можно пренебречь лишь в некоторых ситуациях. Динамические теории не могут описывать явления с большими флуктуа-циями, связь со случайностью сглажена, огрублена. Поэтому статистические законы глубже, чем динамические, а вероятностная причинность оказывается глубже, чем динамическая.
Положение о первичности статистических законов выдвинули создатели квантовой механики. Сначала многие связывали его с индетерминизмом, поскольку детерминизм в привычном понимании в микромире оказался недостижим. Большая часть ученых воспринимала статистические законы как недостаточность наших знаний о микрообъектах, т. е. как промежуточный этап развития знаний. Но когда оказалось, что вероятностная теория подтверждается многими экспериментами, стали говорить, что эти законы дополняют друг друга и в то же время не могут быть сведены друг к другу. Статистические закономерности — объективные законы природы, отражающие реальные связи в микромире. В макромире поведение индивидуальных объектов подчинено динамическим законам, а совокупности объектов — статистическим. В микромире и объекты, и их совокупности описываются как динамическими, так и статистическими законами. История науки показывает, что динамические законы постепенно сменяются законами статистическими, представляющими более глубокий уровень понимания сущности и более широкий охват явлений природы. Статистические закономерности приводят к более хорошему согласию с экспериментом. Ее результаты при определенных условиях согласуются с результатами динамических теорий, что и предполагает принцип соответствия Бора.
До создания квантовой механики Борн вместе с учениками получил выдающиеся результаты по объяснению явлений в твердых телах и кристаллах, используя понятие кристаллической решетки и применяя теорию групп. Поэтому он сразу же применил этот подход к различным проблемам строения атома, физики твердого тела и молекулярной физики. В 1926 г. Борн предложил способ расчета электронных оболочек атома и методы решений для задач столкновения частиц по теории возмущений, которые известны как борновское приближение, и вместе с Н. Винером ввел в квантовую механику понятие оператора. В отличие от ситуации в классической механике некоторые величины (момент импульса, энергия при движении в замкнутой области пространства и др.) могут принимать лишь дискретный ряд значений. Возможные значения
212

физических величин являются собственными значениями операторов, сопоставляемых в квантовой механике с каждой физической величиной. Эта величина может принимать определенные значения с вероятностью, равной единице, только в случае, если система находится в состоянии, изображаемом собственной функцией этого оператора. Тогда вероятность превращается в достоверность.
Зная -функцию, можно вычислить среднее значение любой физической величины и ее отклонение от среднего значения — дисперсию. В отличие от классической механики поведение отдельной частицы имеет статистический характер, т. е. это уже не связано с наличием очень большого числа частиц. Но при формулировке квантовой механики пришлось ввести еще один принцип — фундаментальный принцип неотличимости или тождественности частиц. В классической механике частицы можно отличить по их состояниям, в этом смысле они не теряют индивидуальности. В квантовой механике это невозможно, так как микрочастица не имеет траектории. Если волновые функции двух частиц перекрываются, то в области перекрытия нет возможности отличить одну частицу от другой. Поэтому получается, что тождественными оказываются и свойства частиц, и их состояния. В природе реализуются лишь те состояния совокупности одинаковых частиц, которые не меняются при обмене местами одинаковых частиц. Поэтому и состояния описываются лишь симметричными или антисимметричными волновыми функциями, а характер симметрии определяется собственным моментом импульса частицы (ее спином). Сформулированный на этой основе принцип Паули позволил сформировать статистические правила для частиц с целым и полуцелым спином и понять построение Периодической системы химических элементов.
В 1927 г. Борн разработал, при участии американского физика Р. Оппенгеймера, теорию строения двухатомных молекул. Квантовая механика явилась теоретической основой химии. С ее помощью удалось построить теорию твердого тела, многих его свойств в различных полях. На ней базируются квантовые статистика, электродинамика, теория излучения и др. Она легла в основу теории радиоактивного распада и стала базой атомной и ядерной физики.

6.2. Принципы соответствия и неопределенности. Роль прибора и процесса измерения в квантовой механике

Границы применимости существуют у каждой теории. Так, классическая механика описывает движение макроскопических тел при скоростях, существенно меньших скорости света. Эти границы выяснились только после создания СТО — релятивистская меха-
213

ника расширила классическую на случай больших скоростей. Ценность механики Ньютона при этом не уменьшилась — для малых скоростей тел (по сравнению со скоростью света) поправки малы. При создании квантовой механики было важно строить новую теорию так, чтобы соотношения между величинами были аналогичны классическим, т. е. каждой классической величине нужно было поставить в соответствие квантовую, а потом найти соотношение между квантовыми величинами, пользуясь классическими законами. Такие соответствия можно было найти только из операций измерения.
Принцип соответствия — новая теория не может быть справедливой, если не будет содержать в качестве предельного случая старую теорию, относящуюся к тем же явлениям, если она уже подтверждена опытом в этой области. Этот принцип построения новых теорий в других областях, сформулированный Н. Бором (1923), отражает диалектику соотношения абсолютной и относительной истин. Смена теорий (относительных истин) есть шаг на пути приближения к абсолютной истине, тем самым принцип соответствия отражает объективную ценность физических теорий — новые теории не отрицают старых именно потому, что старые теории с определенной степенью приближения отражают объективные закономерности природы.
В 1927 г. В. Гейзенберг при поддержке Бора и его школы предложил устранить противоречие «волна — частица», которое он понимал как аналогию. Он шел от наглядных феноменологических моделей. Считая, что «совокупность атомных явлений невозможно непосредственно выразить нашим языком», он предложил отказаться от представления о материальной точке, точно локализованной во времени и пространстве. Либо точное положение в пространстве при полной неопределенности во времени, либо наоборот — таково требование квантовых скачков.
Принцип неопределенности Гейзенберга — это фундаментальное положение квантовой теории, отражающее ограничение информации о микрообъектах самими средствами наблюдения.
Пусть в какой-то момент нам нужно узнать положение и скорость электрона. Самый точный метод — осветить электрон пучком фотонов. Электрон столкнется с фотоном, и его положение будет определено с точностью до длины волны фотона. Для большей точности нужно использовать фотоны наименьшей длины (или большей частоты, или обладающие большими энергией Е и импульсом hv/c). Но чем больше импульс фотона, тем сильнее он исказит импульс электрона. Для точного знания положения электрона нужно использовать фотоны бесконечной частоты, но тогда и импульс его будет бесконечным, совершенно неопределенным. И, наоборот, желая определить точно импульс электрона,
214

из аналогичных рассуждении придем к неопределенности положения. Выразив ее как , а неопределенность импульса как , получим . Для других сопряженных величин — энергии Е
и времени tквантово-механическое соотношение неопределенности будет
Значит, чем точнее фиксирован импульс, тем большая неопределенность в значении координаты. Аналогично связаны энергия и время — точность измерения энергии пропорциональна длительности процесса измерения. И это не неточность определения величин, которая может быть улучшена более точным прибором, это принципиальная неточность определения физических величин в атомной физике. Причина этого — взаимодействие с макроскопическим прибором. Принцип дает ограничения, которые нельзя устранить никакими усовершенствованиями прибора. В классической науке приборы и наблюдения тоже искажали измерения, но эти искажения можно было уменьшать. Разница в том, что соприкасаются и взаимодействуют объекты разных миров: для изучения микромира используются приборы и наблюдатели из макромира. Они-то и вносят искажения в состояния микрообъектов, которые не устранимы. Поэтому будущее состояние микрочастицы не может быть достоверно и точно предсказано. Повышение точности знания одного параметра увеличивает неточность в знании сопряженного ему параметра. Отсюда — дискуссии о непредсказуемости явлений микромира, о «свободе воли» электрона, о победе случайности над детерминизмом, нарушении принципа причинности в микромире и др. Принцип неопределенности иногда называют следствием принципа дополнительности, что до сих пор вызывает дискуссии.
 Основа интерпретации квантовой механики — принцип Гейзенберга — устанавливает границы применимости классической физики и считается общепризнанным.
Применим соотношения Гейзенберга, например, к электрону в атоме. Так как скорость электронов при движении вокруг ядра порядка 106 м/с, то максимально допустимая неопределенность скорости не должна превышать самой скорости. Пусть они равны, тогда из соотношения неопределенностей для координат и импульсов . Иливчислах: = 6,62 10-34Дж с/(9,1 10-31 кг    106 м/с) = 7 • 10-10 м, т. е. неопределенность в координате порядка размеров самого атома. Отсюда вывод: электрон размазан по всему объему атома в виде пульсирующего облачка, и его боров-ская орбита — геометрическое место точек, в которых корпускулярные свойства электрона наиболее выражены.
Понятие вероятности становится первичным, и вокруг него строится наука XX в., формируя новую, неклассическую стратегию познания. Опыты дают набор возможных значений величин с распределением их вероятности, и это может быть предвычисле-
215

но! Исследуя специфику взаимодействия микрообъекта с классическим средством наблюдения, Гейзенберг в работе «О наглядном содержании квантовой кинематики и механики» (1927) рассмотрел основные положения квантовой механики, ориентируясь на возможности измерения величин, характеризующих состояние микрообъекта. Он заключил, что в микромире «чем точнее определяется местоположение, тем менее точными становятся сведения об импульсе». Или, в отличие от «лапласовского детерминизма», поскольку мы не можем знать настоящего во всех деталях, то не можем достоверно предсказать будущее. Природа накладывает на понятия координаты и импульса принципиальные ограничения, которых не было в классической науке, возможно, из-за малой величины h.
«Бог не играет в кости» — считал Эйнштейн. Связь принципа неопределенности с принципом дополнительности Бора — основа так называемый «копенгагенской» трактовки квантовой механики. Эйнштейн долгое время оппонировал Бору. Он писал: «Существует нечто вроде «реального» состояния физической системы, существующего объективно, независимо от какого-то ни было наблюдения или измерения». Споры Бора с Эйнштейном проясняют многое в истолковании смысла квантовой механики, фактически они отражают продолжавшуюся более двух десятилетий борьбу двух мировоззрений, двух теорий познания. Вероятностное толкование волновой функции было подготовлено работами Бора, который применял идею вероятности к переходам электронов, но еще раньше Эйнштейн ввел понятие вероятностей для спонтанного и индуцированного излучений. От них вероятностные представления вошли в науку XX в.
Дирак отмечал: «Бор считал, что высшая мудрость должна быть выражена обязательно такими словами, смысл которых не может быть определен однозначно. Следовательно, истинность высшей мудрости является не абсолютной, а только относительной в соответствии с одним из значений двухзначных слов: поэтому противоположное высказывание также правомерно и мудро». Принцип дополнительности как вершину диалектики Бора относят к копенгагенской школе.
К Бору постепенно примкнули Гейзенберг, Борн, Иордан, Паули, а в некоторых вопросах и Дирак. Паули даже предложил (1932) назвать квантовую механику «теорией дополнительности». Иордан в книге «Наглядная квантовая теория» (1937) тоже свел все существо квантовой механики к идее дополнительности и утверждал, что «представление об объективной картине процессов теряет свою справедливость». Представители копенгагенской школы не признавали реальности микрообъектов и микропроцессов, отрицая причинность в элементарных процессах. Эти вопросы обсуждались на Сольвеевских конгрессах, где «копенгагенцам» рез-
216

ко возражали Лоренц, Эйнштейн, Ланжевен, Планк, Лауэ и др. Ланжевен, например, писал: «Я уверен, что, отказываясь от детерминизма, мы лишим науку ее основного движущего начала — того, что до сих пор составляло ее силу и залог ее успеха: веры в конечную познаваемость Вселенной. Ничто в переживаемых нами трудностях не оправдывает и не требует изменения наших установок, что, по моему глубокому убеждению, было бы равносильно отречению». Они были «детерминистами», а новый, неклассический образ природы завоевывал молодые умы.
Мысленный эксперимент А.Эйнштейна, Б.Подольского и Н. Розена был задуман для доказательства ошибочности толкования квантовой механики. Они задались вопросом, что случится, если состоящая из двух протонов частица распадется так, что протоны разлетятся в противоположных направлениях. По квантовой механике при отсутствии наблюдателя свойства протонов остаются неопределенными и могут быть представлены как суперпозиция всех возможных состояний. Означает ли это, что каждый протон движется во всех возможных направлениях? Из-за общности происхождения их свойства связаны (коррелируют) друг с другом. Так, по закону сохранения импульса, если один протон полетит вверх, то второй — обязательно вниз. Поэтому, измерив импульс одного, мы узнаем импульс и второго даже в том случае, если он уже улетел на другой конец Вселенной. Эйнштейн назвал это «действием призраков на расстоянии», которое нельзя сопоставить ни с какой реалистической моделью из обыденного опыта: все свойства каждого из протонов должны быть зафиксированы с того момента, когда они только начали свой разлет.
Допустим, неопределенность в поведении электрона зависит не только от импульса, координаты и спина, но и от каких-то других скрытых параметров, которые нам удалось познать. Можно ли в этом случае достичь полного описания, как в классической механике? Это можно осуществить для единичного измерения, но оно так ограничит область значений скрытых параметров, что уже ко второму измерению их будет недостаточно для согласия с квантовой механикой. Гейзенберг и Бор проанализировали возможности одновременного измерения двух сопряженных величин (Е, tи д, р) и провели мысленные эксперименты, подтверждающие принцип неопределенности. Получалось, что микрообъект при использовании одних приборов представляется локализованной во времени (t) и в пространстве (х) материальной точкой, не обладающей определенными импульсом (р) и энергией (Е), а при использовании других приборов — как нечто, обладающее Е и р, но не локализованное по х и t. Бор и его «копенгагенская школа» обобщили принцип Гейзенберга, утверждая, что в естественных науках можно пользоваться только теми величинами, для измерения которых существует опре-
217

деленная измерительная процедура и созданы соответствующие приборы. Но результат измерения получается всегда в классических величинах и понятиях, поэтому все объекты уже не существуют сами по себе, как в классической науке, а связаны с экспериментальной установкой вместе с наблюдателем и как бы теряют свою самостоятельную реальность. Впоследствии известный советский физик-теоретик В.А.Фок назвал это свойство «относительностью к средствам наблюдения».
Г.Гейзенберг активно участвовал в обсуждении философских проблем, связанных с квантовой физикой и теорией познания. Вместе с П.Дираком он выдвинул идею обменного взаимодействия, позволившую (независимо от Я. И. Френкеля) разработать первую квантово-механическую теорию ферромагнетизма, основанную на обменном взаимодействии. В начале 30-х гг. они создали теорию дырок Дирака и постулировали эффект поляризации вакуума.
В 50-е гг. Хью Эверетт предложил гипотезу «множественности миров», в которой считается, что каждое проведение измерения заставляет частицу сделать выбор, например пойти в правую или левую щель. При каждом таком выборе вся Вселенная как бы расщепляется на две. Но есть и иное мнение. Возможно, квантовая теория требует большей перестройки нашего мышления, нашей логики. Булева логика, основанная на бинарности мышления, на утверждениях типа «или—или» не дает нам возможности понять свойств частицы, проходящей через две щели, и квантовая теория может изменить наши представления о мире в большей степени, чем изменились наши понятия пространства и времени с появлением теории относительности.

6.3. Строение химических элементов и понимание Периодической таблицы Менделеева

В своей Нобелевской речи Бор отметил, что его теория объясняет молекулярные спектры, неплохо согласуясь с опытом. При переходе к объяснению строения химических элементов он предположил, что замкнутые конфигурации энергетически более выгодны и после заполнения одной оболочки начинают заполняться следующие. Это предположение помогло Паули прийти (1925—1926) к своему принципу запрета, согласно которому в каждом квантовом состоянии может находиться только один электрон. После создания Бором квантовой теории атома водорода и успехов квантовых представлений в других областях науки активно развивалась спектроскопия, которая явилась ключом в мир внутриатомных явлений.
Еще в 1896 г. П.Зееман осуществил опыт, который не успел провести Фарадей. Пламя горелки он поместил между полюсами электромагнита и наблюдал спектр. При наблюдении поперек поля кроме основной ли-
218

нии с частотой колебаний, которая была бы без поля, были две линии, смещенные в разные стороны от основной. Все три линии линейно поляризованы. При наблюдении вдоль поля несмещенной компоненты нет, а смещенные — поляризованы по кругу в противоположных направлениях. Х.Лоренц объяснил эффект Зеемана вращением электронов по круговой орбите с циклической частотой, определяемой силой Лоренца. Дж.Лармор учел прецессию электронов вокруг силовых линий магнитного поля с этой частотой. Теория Лармора—Лоренца — выдающееся достижение электронной теории, и ее авторы были удостоены Нобелевской премии за открытие и объяснение эффекта Зеемана (1902). Но квантовая теория, развиваемая А. Зоммерфельдом, не могла ничего сказать о поляризации и интенсивности линий, их определили в нормальном эффекте Зеемана с помощью принципа соответствия Бора. На практике чаще наблюдается расчленение на несколько компонентов (линий). Как указывал в 1919 г. Д.С.Рождественский, эта проблема тесно связана с магнитными свойствами атома.
Но не был интерпретирован аномальный эффект Зеемана, когда возникало отличное от триплета расщепление линии в магнитном поле. Паули, работая у Бора два года над этой проблемой, выдвинул гипотезу ядерного спина для объяснения сверхтонкой структуры спектральных линий. Он считал, что необъясненные явления «возникают вследствие двузначности свойств электрона, которую нельзя описать классически» (1924). Фактически это и была гипотеза существования спина электрона, которую робко высказывал еще Комптон (1921). В 1925 г. американские физики Дж. Гауд-смит и С.Уленбек по представлению физика-теоретика П.Эренфеста опубликовали статью с предложением гипотезы спина электрона, ссылаясь на работу Паули, а после обсуждения с Бором, Эйнштейном и Эренфестом — большую статью в «Nature», где понятие спина объясняло многие явления в спектре.
Идея опыта состояла в использовании известного факта притяжения большим магнитом маленьких, у которых на северный и южный полюсы действуют разные силы из-за неоднородности большого магнита. В однородном поле они просто повернулись бы в направлении поля. По классической теории на экране пучок должен дать размытое изображение — магнитный момент атома может принимать любые значения. По квантовой теории следовало ожидать, что пучок или не расщепится (как должно быть у водорода), или расщепится не менее чем на три пучка (при наличии магнитного момента). Но получалось, что пучок атомов водорода, серебра, натрия, калия и других одновалентных атомов расщепляется на два пучка. Поэтому и возникла гипотеза о собственном механическом и магнитном моменте электрона.
С позиции классической теории наличие таких моментов может быть обусловлено вращением электрона вокруг собственной оси. Тогда он как вращающаяся масса будет обладать моментом импульса. А вращающийся заряд есть совокупность круговых токов, т.е. появляется и магнитный момент.
219

Спин электрона имеет размерность вращательного момента-импульса, умноженного на расстояние, т.е. постоянной Планка  Вращательный момент Lкратен , является целым, и ему отвечают (2L + 1) различных состояний с различными значениями проекций на данную ось. Спин электрона в единицах hможет иметь два значения: +(1/2) и -(1/2), соответствующие двум значениям проекции на эту ось (рис. 6.1). Говорят, что его состояния — «вверх» и «вниз». В магнитном поле он направлен по полю или против него. В том же 1924 г. Паули сформулировал принцип: на одной орбите не могут одновременно находиться более двух тождественных частиц с полуцелыми спинами. Спин электрона описывает асимметрию электрона, неизотропность его свойств.
Паули руководствовался при написания работы аналогией спина электрона и поляризации фотона, так как для введения спина в волновую механику предложил приписать -функции две компоненты, имеющие смысл двух взаимно перпендикулярных компонент вектора, как для света. Формализм, введенный Паули, вскоре усовершенствовал Дирак, но интересны соображения Паули о введении спина в волновую механику.
Принцип Паули отражает антисимметрию волновых функций электронов, наличие у них полуцелого спина. Согласно принципу, в силу неотличимости микрочастиц исключается вероятность того, что внутри одного атома одинаковые орбиты могут быть заняты одинаковыми электронами. Или: в одном атоме не может быть двух электронов, находящихся в одинаковом состоянии по всем четырем квантовым числам, характеризующим состояние (например, электронов только с противоположными спинами). Этот принцип позволил объяснить химические свойства элементов, определяемые электронами внешних незаполненных оболочек, что, в свою очередь, дало фундаментальное физическое обоснование Периодической таблице элементов.
Запрет Паули привел к новым открытиям, к пониманию тепло- и электропроводности металлов и полупроводников. К 1927 г. Паули сумел объяснить парамагнетизм электронного газа в металле и структуру электронных оболочек в атоме.
Электронные оболочки атомов строились с помощью принципа Паули. Так была понята Периодическая система химических элементов Д. И. Менделеева. Каждый слой представлялся совокупностью стационарных орбит. По Бору, электроны только после заполнения оболочки начинают занимать более высокие орбиты. Методы нахождения допустимых орбит определялись правилами квантования Бора—Зоммерфельда, позволившими продвинуть модель Бора от водорода к другим атомам. Оказалось, что электроны
220

движутся не по окружностям, а по эллипсам, значит, находящиеся на одном эллипсе электроны должны отличаться ориентацией, а эллипсы одного слоя — эксцентриситетом. Тогда электроны, находящиеся в одном слое, отличаются энергетическим состоянием. На основании квантово-механического рассмотрения микрообъектов стало ясно, что их состояние описывается с помощью квантовых чисел — целых или полуцелых чисел, которые определяют возможные дискретные значения физических величин или параметров, описывающих состояние микрообъекта. Например, состояние электронов описывается четырьмя квантовыми числами.
Значения энергии, которые может принимать движущаяся частица, определяются главным квантовым числом (и): п = 1, 2, 3,... Электронные слои обозначают большими буквами латинского алфавита К, L, М, N, О и т.д. Наибольшее количество электронов в слое равно 2n2, поэтому в самом близком к ядру слое К (п = 1) может находиться не более двух электронов, в слое L(п = 2) — не более восьми и т.д. Чем больше заряд ядра или порядковый номер в таблице, тем сильнее притягиваются электроны, особенно внутренних слоев, поэтому диаметры слоев с ростом номера элемента уменьшаются, и все атомы имеют почти одинаковые размеры порядка 10-10 м. Атомы, относящиеся к одной группе элементов таблицы Менделеева, имеют одинаковую валентность, обусловливающую их сходные химические свойства. На внешних оболочках они имеют одинаковое число электронов, которые называются валентными.
Возможные значения орбитального момента импульса в силовом поле определяются азимутальным (орбитальным) квантовым числом (l): l = = 0, 1, 2,..., п - 1. Этим числом характеризуют движение электронов в атомах и молекулах, а также нуклонов в ядрах атомов. Состояния с различными значениями / отличаются величиной момента импульса, им присвоили специальные обозначения: для электрона в состоянии l = 0 — s-состояние, l = 1 — p-состояние или называют его р-электроном; далее с ростом квантового числа — d-электрон или, -электрон. Поскольку орбитальное число всегда меньше главного, то существуют состояния электрона 1s; 2s, 2р; 3s, 3р, 3d; ... Состояние 1s является основным состоянием водорода. Ему соответствует минимум потенциальной энергии, оно самое устойчивое. Возбуждению соответствует переход на более высокое состояние, обладающее большей энергией. Поэтому для возбуждения необходимо затратить энергию. Если это энергия теплового движения, переданная при соударении, то имеем тепловое излучение — обратный переход из возбужденного состояния в основное.
Величина проекции момента импульса на выделенное направление определяется магнитным квантовым числом (т) по формулам квантования: т = -1, ..., -1, 0, +1, ..., +1. Выделенное направление обычно выбирают по направлению внешнего поля. Чаще всего это поле магнитное, отсюда и название квантового числа.
С собственным моментом импульса электрона, не зависящим от движения электрона в пространстве, связано спиновое  квантовое
221

число . Спином обладают все элементарные частицы
(кроме мезонов), это внутреннее свойство микрочастицы. Значения спинового квантового числа определяются принципом Паули.
Так принцип Паули позволил объяснить насыщение уровней. В соответствии со свойствами симметрии -функции при перестановке двух частиц для электронов возможны только антисимметричные состояния. В дальнейшем принцип Паули сыграл решающую роль при построении статистики Ферми—Дирака для частиц с полуцелым спином — фермионов. Для частиц с целым спином (в единицах ) — бозонов — была построена статистика Бозе — Эйнштейна. Принцип Паули не имеет аналога в классической физике, и физические причины существования этого запрета не полностью еще понятны. Паули предложил сначала простое правило, автоматически объясняющее наличие групп из 2, 8, 18 и 32 элементов. Он постулировал, что одну электронную орбиталь (или стоячую волну) могут занимать не более двух электронов. Вскоре было обнаружено наличие спина у электрона, и получилось, что принцип Паули имеет основание.
Если идти по системе химических элементов в направлении увеличения их номера, то оказывается, что электронами сначала заполняются наинизшие уровни энергии. Так, атом висмута выглядит так же, как и атом свинца, но с одним отличием — у висмута на 6p-оболочке на один электрон больше. Существует еще одно правило заполнения оболочек — правило Хунда, согласно которому, при заполнении s, p, dи т. д. уровней их сначала занимают электроны с одинаковой ориентацией спина и только потом — с противоположной. Так можно построить модели 92 стабильных атомов Периодической системы химических элементов.
Так, атом азота имеет 7 электронов; из них по два (с «правым» и «левым» спином) располагаются на уровнях \sи 2s, а остальные три — на уровне 2р, который может вместить только 6 электронов. По правилу Хунда последние три электрона азота имеют одинаковую ориентацию спина. В волновой модели каждому из р-электронов соответствует волновая функция из двух симметричных «яйцевидных» половинок; три из них могут быть ориентированы вдоль любой из трех осей прямоугольной системы координат, в результате атом выглядит сферически симметричным. Следующий атом — кислород — должен содержать в одном из этих «p-пространств» еще один электрон с противоположно направленным спином. Это можно представить так: две полностью конгруэнтные p-орбитали проникают друг в друга, совершенно не влияя одна на другую. Периодическая система элементов теряла свою загадочность.
Само понятие спина не вытекало из теории того времени. Казалось, что при вращении электрон имел скорость, превышающую скорость света с, что противоречило СТО. Так, в тяжелых атомах скорости электронов получались порядка 0,6 с. Непротиво-
222

речивую теорию с учетом требований СТО построил П.Дирак (1928). Из его релятивистского волнового уравнения автоматически следовало наличие собственного магнитного момента электрона. Кроме того, оно оказалось симметричным относительно знака электрического заряда. Тем самым Дирак предсказал существование антиэлектрона — позитрона. Позитрон был обнаружен действительно в космических лучах К.Андерсоном в 1932 г. Квантовую механику, которая согласуется с теорией относительности, называют релятивистской. Так началось проникновение в дискретный мир микрочастиц.
Как известно, природные химические элементы занимают в Периодической таблице места до № 92, т. е. до урана. Более тяжелых элементов нет ни на Земле, ни в метеоритах, приходящих из Космоса. Это и понятно — в ядрах атомов этих элементов больше протонов, значит, ядра таких элементов неустойчивы, а атомы — радиоактивны. Для получения трансурановых элементов были созданы специальные установки, названные циклотронами, в которых создаются мощные пучки а-частиц и более тяжелых частиц для бомбардировки ими урана. Первые циклотроны были созданы в США, где были получены сначала плутоний и нептуний, а затем — вплоть до элемента № 101, который был назван менделее-вием. В 1958 г. В. А. Карнаухов (СССР) оценил границы стабильности ядер (до Z = 70) по отношению к протонной радиоактивности и предсказал возможные протонно-активные ядра (Sc-39, Fs-63, Sb-106), в 1959 г. В. И. Гольданский предсказал возможность двухпротонной радиоактивности — одновременного испускания ядром двух протонов, а П. Е. Спивак с сотрудниками определил период полураспада свободного нейтрона.
В нашей стране получением трансурановых элементов занялась группа ученых во главе с Г.Н.Флеровым. В подмосковном городе Дубна был введен в строй более совершенный циклотрон, в котором разгонялись ядра атомов легких элементов. В начале 60-х гг. шведы, а затем американцы сообщили о получении элемента № 102 с атомной массой 254, названного нобелием. Но в 1963 г. группа Флерова получила элемент № 102 с атомной массой 256, а многочисленные трехлетние исследования показали, что изотопа с массой 254 у этого элемента нет, т.е. сообщение шведов и американцев — фальсификация, и элемент № 102 стал первым элементом, полученным в СССР. Исследовать его свойства было очень трудно, так как его атомы распадаются за несколько секунд, и изучить свойства нужно всего по нескольким атомам. Но с помощью сверхчувствительного метода газовой радиохимии, разработанного в Дубне, эта задача была блестяще решена. Новый элемент обладал химическими свойствами, соответствующими актинидам (3-я группа Периодической таблицы), и советские ученые предложили назвать его в честь Фредерика Жолио-Кюри. Затем появилось сообщение об открытии элемента № 103 в США, который был назван в честь создателя циклотрона американского физика Лоуренса.
223

В это время в Дубне был получен и исследован элемент № 104, названный в честь академика И. В. Курчатова — курчатовий. О трудности этих работ говорит тот факт, что атом этого элемента существует всего лишь 0,3 с, а этот один атом получается в течение часа работы циклотрона. В 1967 г. Г.Н.Флеров высказал идею, что перспективным методом синтеза новых элементов может явиться деление сверхтяжелых составных ядер. В 1974—1975 гг. группа советских ученых во главе с Ю. Ц. Оганесяном осуществили синтез элементов № 106 и 107.
Новые частицы образовывались и в специальных устройствах — ускорителях. Если до середины века казалось, что существуют жесткие ограничения на передаваемую атомам энергию, связанные с увеличением массы разгоняемой частицы при скоростях, сравнимых со скоростью света (как в циклотронах), то благодаря работам советских физиков появились новые типы ускорителей. Академик В.И.Векслер предложил в 1944 г. принцип «авто-фазировки» ускоряемых частиц, что открыло новые возможности перед ядерной физикой и физикой элементарных частиц. На этом принципе в Объединенном институте ядерных исследований в Дубне были созданы фазотроны (с изменением частоты электрического поля), синхротроны (с изменением напряженности магнитного поля) и синхрофазотроны (комбинация обоих методов). В этих новых типах ускорителей поток заряженных частиц направляется на неподвижную мишень, и часть энергии расходуется на ускорение частиц мишени, что удорожает эксперименты. Академик Г. И.Будкер предложил создать ускоритель на встречных пучках, т.е. встречный пучок и играет роль мишени. Такой ускоритель был создан в Институте ядерной физики в Новосибирске.

6.4. Радиоактивные элементы и возможности превращения элементов

Закон спонтанного распада радиоактивных атомов связывает радиоактивные превращения с уже известными видами естественной радиоактивности — -лучами. Возникающие
при радиоактивном распаде новые элементы исследовали Ф. Сод-ди с Э. Резерфордом (1902). Они пришли к выводу, что «радиоактивность — атомное явление, сопровождающееся химическими изменениями, в котором порождаются новые вещества. Эти изменения должны происходить внутри атома, а радиоактивные элементы являются, должно быть, спонтанными превращениями атомов». В 1903 г. Содди доказал, что в радии через несколько месяцев появляется гелий. Резерфорд догадался, что гелий образуется а-частицами, испускаемыми радием. Но только с использованием счетчика а-частиц (счетчик Гейгера) стало понятно, что а-части-
224

цы — это ионы гелия (1908). Содди строил «генеалогические» схемы радиоактивных веществ. Основной закон радиоактивного распада— закон убывания активности эманации со временем по экспоненте, причем каждому веществу соответствовал свой период полураспада — установили Содди и Резерфорд. И по содержанию урана, свинца и гелия, присутствующих в урановой руде, стало возможно определить возраст Земли. Итак, среднее время жизни элемента — это точно определенная константа для каждого элемента (см. рис. 2.5).
Особенность этого закона в том, что он — статистический: проявляется яснее, если число распадающихся атомов больше. Но он отличался от статистических законов классической физики, которые могут рассматриваться суммой частных динамических законов, вызываемых внешними причинами. Причины превращений нужно искать в самом атоме, и любая теория строения атома должна удовлетворять требованиям недопущения «старения» вещества, как выразилась М.Кюри. Возникла новая концепция закона, данного безотносительно к поведению индивидуальных объектов, составляющих совокупность. Менялась общая направленность вопросов: вместо того, чтобы интересоваться, почему один атом распадается через сутки, а другой — через 1000 лет, стали определять количество атомов для данного элемента, распадающихся за 1 с.
Эйнштейн использовал идею этого закона при получении одного из основных квантовых статистических законов излучения (1916). И как каждый радиоактивный атом взрывается в результате случайного процесса в некий непредвиденный момент без видимой на то причины, так и переход в атоме должен происходить по статистическим законам. Затем он пересмотрел на этой основе теорию броуновского движения, получил формулу Планка для излучения абсолютно черного тела и показал, что при каждом элементарном акте излучения должен испускаться фотон с импульсом в совершенно случайном направлении. Хотя данные работы по квантовой теории излучения статистичны, Эйнштейн оставался детерминистом — он считал точный момент перехода электрона, определяемым по законам причинности, которые зависят от структуры возбужденного атома. И статистический метод он использовал как бы от незнания этих законов.
Весной 1913 г. Содди сформулировал правило: испускание а-частиц уменьшает атомную массу элемента на 4 и смещает его на два места влево по Периодической таблице, а испускание -частицы смещает элемент вправо на одно место, почти не меняя атомной массы (рис. 6.2). Значит, химические свойства элементов (по крайней мере, радиоактивных) связаны не с атомной массой, как это утверждала классическая химия, а с внутриатомным электрическим зарядом.
225

Самопроизвольный распад и образование новых элементов изучали с начала XX в. Так, при обработке драгоценных камней на Цейлоне был открыт новый минерал — торианит, который в Англии исследовали У. Рамзай и О. Ган. Они получили вещество, соответствующее торию, но с большей радиоактивностью, и назвали его радиоторием. Среднее время его жизни оказалось 2 года. Значит, им можно было бы заменить дорогостоящий радий в лабораторных опытах, но они не смогли выделить радиоторий никакими химическими методами. В 1907—1910 гг. подобные проблемы возникали при выделении некоторых других радиоактивных элементов. После открытия нейтрона опыты по бомбардировке -частицами продолжались, меняя представления об элементах и показывая возможность превращения одних элементов в другие.
Содди, как и другие, не мог отделить ионий от тория никакими химическими способами. Это было странно, поскольку большинство радиоактивных элементов расположено в Периодической таблице вблизи инертных газов, а свойства элементов в этой части таблицы легко предсказываются, поэтому они и должны легко отделяться. Кроме того, в этой части таблицы нет свободных клеток. Расчеты по модели атома Томсона показывали, что число электронов в атоме пропорционально атомному весу. Так Содди пришел к выводу и показал (1913), что в одной клетке
226

таблицы могут быть элементы с разной атомной массой, но обладающие одним зарядом ядра и одинаковыми свойствами. Содди назвал их изотопами (от греч. isoодинаковый + tope— место). Впоследствии установили, что в состав ядра помимо протонов входят нейтроны, которые и изменяют атомные массы.
Английский физик Ф.Астон еще в 1913 г. разделял изотопы методом газовой диффузии. Он предложил электромагнитный метод: ионизованные атомы отклоняются электрическим или магнитным полем, а величина отклонения зависит от массы. В 1919 г. Астон сконструировал первый масс-спектрограф, который свел проблему к простой лабораторной операции, и произвел революцию в исследовании изотопов. Астон выяснил почти все об изотопах. Он открыл и изучал большое число стабильных изотопов. Все опытные факты, полученные в лаборатории Резерфорда, относились к радиоактивным элементам, поэтому необходимо было получить подтверждение, что и нормальные атомы устроены аналогично.
Первое искусственное расщепление ядра атома было осуществлено в лаборатории Резерфорда в Кембридже. Он изучал столкновение -частиц с легкими атомами. От таких ударов частицы ускорялись: ядро водорода, например, увеличивало свою скорость в 1,6 раза, на что оно отбирало у частицы 64 % ее энергии. Такие ускоренные ядра наблюдал в 1914 г. Марсден. Первая мировая война затормозила эти исследования, и лишь в 1919 г. Резерфорд стал облучать азот а-частицами, наблюдая появление однозарядных ионов водорода, названных Марсденом протонами. Их получалось очень мало: на миллион а-частиц — 20 протонов. Кроме протонов Резерфорд получил и изотоп кислорода с массой 17.
Первую ядерную реакциюс искусственным превращением элементов осуществили в 1921 г. Резерфорд и Дж.Чедвик из ядер азота получили ядра изотопа кислорода при бомбардировке а-частицами. В 1932 г. И. и Ф.Жолио-Кюри сфотографировали следы протонов в камере Вильсона, выбиваемых из парафина бериллиевым излучением. Вновь возникла проблема источника энергии — появление протонов требовало рождения в бериллии фотонов с энергией 50 МэВ. Чедвик показал, что эти трудности снимаются, если предположить, что излучение бериллия состоит из частиц с массой, примерно равной массе протонов, и нулевым зарядом. Результаты исследований этих реакций Чедвик опубликовал в 1932 г., назвав эти частицы нейтронами (от лат. neutrum— ни то, ни другое). Существование нейтронов вскоре было подтверждено: они испускались ядрами аргона, натрия и алюминия при облучении их а-частицами. Свободный нейтрон нестабилен, он распадается на протон, электрон и нейтрино с периодом полураспада 11,7 мин.
Расщепления атомов кислорода под действием нейтронов добились в том же 1932 г. Л.Майтнер и К.Филипп. Впоследствии были получены расщепления и других атомов. «Большая эффективность нейтронов в получении ядерных реакций, —
227

говорил Чедвик, — легко объясняется. При столкновении заряженной частицы с ядром вероятность ее проникновения в ядро ограничена кулоновской силой. И это определяет то минимальное расстояние, на которое может приблизиться частица и которое возрастает с увеличением атомного номера ядра и становится столь большим, что вероятность проникновения в ядро становится малой. В случае соударения с ядром нейтрона ограничения такого типа не возникает. Сила взаимодействия нейтрона с ядром очень мала, только на малых расстояниях она начинает быстро расти и носит характер притяжения. Вместо потенциального барьера, как в случае заряженных частиц, нейтрон встречает «потенциальную яму». Поэтому даже нейтроны слабых энергий могут проникать в ядро».
В 1928 г. молодой советский физик Г. А. Гамов и независимо от него Р.Гарни и Э.Кондон создали квантово-механическую теорию а-р а с п а д а. Было непонятно, как а-частица могла преодолеть потенциальный барьер и выйти из ядра. Гамов использовал аналогию с частичным проникновением света во вторую среду при падении на границу раздела двух сред под углом, большим угла полного внутреннего отражения, и объяснил явление с помощью волновой механики.
После открытия нейтронов стала актуальной проблема состава ядра. В 1930 г. В.А.Амбарцумян и Д.Д.Иваненко и независимо от них П.Дирак высказали идею, что электронов в ядре вообще нет. Но научное сообщество отнеслось к этой идее весьма скептически. После открытия нейтронов Иваненко предположил, что ядра состоят только из протонов и нейтронов (1932). Гипотеза Иваненко, привлекательная своей простотой, была подтверждена последующими исследованиями ядерных превращений, быстро распространилась и стала использоваться. Протоны и нейтроны как основу строения ядра стали называть нуклонами. Проблема ядерных сил до сих пор не решена, хотя эта гипотеза лежит в основе современной теории строения ядра.
Теорию р-распада в 1936 г. выдвинули Паули и итальянский физик Энрико Ферми. Они предположили, что в ядре происходит превращение нейтрона в протон с одновременным испусканием электрона и нейтрино (нейтральной частички, обладающей ничтожной массой и собственным моментом вращения, или спином, равным 1/2). Испускание электрона происходит примерно так же, как фотон испускается атомом. Впоследствии, опираясь на теорию р-распада, Ферми построил цикл термоядерных реакций (протон-протонный), который лежит в основе происхождения энергии Солнца и звезд. Доказать справедливость теории можно лишь обнаружением конечных продуктов этих реакций — нейтрино.
Фотографии протона, вылетающего при столкновении а-частицы с атомом азота, получил в камере Вильсона ученик
228

Резерфорда П. Блэккет (1925). Но это явление, т. е. расщепление ядра, происходило очень редко: на 23 000 фотографий с 460 000 траекторий частиц только в восьми случаях наблюдался вылет протона. Значит, а-частицы неэффективны для получения расщепления. Теория Гамова показывала путь ее повышения — нужно придать частице энергию, достаточную для преодоления потенциального барьера. Для маленьких частиц вероятность проникновения больше, поэтому, разогнав протоны до большой скорости, можно добиться с ними большей эффективности, чем у а-частиц.
Для сравнения произведем оценку возможности теории Гамова. В атомной физике 1,6-10-19 Дж (1 эВ) соответствует энергии, приобретаемой частицей с зарядом е при прохождении разности потенциалов 1 В. Энергия наиболее быстрых а-частиц, испускаемых радиоактивными веществами, равна 12,8-10-13 Дж (8 МэВ). В 1925 г. для получения рентгеновских лучей использовались мощные индукционные катушки с разностью потенциалов порядка 100 кВ. Значит, ускоренный в таком поле электрон (или протон) мог приобрести энергию 0,16 • 10-13 Дж (0,1 МэВ). Но теория Гамова предсказывала, что протоны с энергией 1,6 • 10-13 Дж (1 МэВ) будут по эффективности равны а-частицам с энергией 51,2-10-13 Дж (32 МэВ). Идея была привлекательной, и начали строить все более мощные установки с огромными напряжениями. Возникла современная алхимия, как выразился Резерфорд.
Космические лучи, открытые еще в 1904 г., привлекали и астрономов, и геофизиков. Лучи вызывали первичную ионизацию воздуха, возрастающую с высотой. После первой мировой войны их изучение возобновилось не только на высотах, но и в глубинах водоемов. Космическое излучение считалось состоящим из у-квантов, вызывавших в атмосфере р-излучение. Д. В. Скобельцын, основатель советской школы физики атомного ядра и космических лучей, впервые исследовал эти лучи с помощью камеры Вильсона, помещенной в магнитное поле, и установил, что ионизация воздуха создается не у-квантами, а быстрыми р-луча-ми при энергии 3,2 10-11 Дж (200 МэВ). Дальнейшие исследования показали, что первичные космические лучи, состоящие в основном из протонов, действительно рождают быстрые р-лучи.
Американский физик К. Андерсон продолжил исследования лучей по методу Скобельцына и обнаружил (1932) на фотоснимках треков (следов) в камере положительные электроны, которые назвал позитронами (одновременно их открыли в Англии Блэккет и Оккиалини). Тут и вспомнили о релятивистском уравнении для электрона, полученном Дираком еще в 1928 г., где предсказывалось существование положительно заряженных электронов. Велись активные поиски позитрона в самых разных процессах. При облучении ядер тяжелых элементов жесткими у-квантами зафиксировали рождение пар электрон—позитрон — так материя у-кванта перехо-
229

дила в материю электрона и позитрона. В 1933 г. Ф.Жолио продемонстрировал фотографию в камере Вильсона, где было зарегистрировано рождение пары электрон—позитрон. Затем было открыто превращение пары электрон—позитрон в два -кванта — этот процесс назвали аннигиляцией. Образование позитрона было обнаружено и при взаимодействии с ядрами а-частиц и нейтронов. Так в очень короткий срок стало известно о существовании античастиц.
Искусственные радиоактивные элементыоткры-ли И.Кюри, дочь П. и М.Кюри, и ее муж, Ф.Жолио (1934). Годом раньше они установили, что при бомбардировке а-частицами некоторых легких элементов возникают позитроны, испускающиеся и после реакции. Из энергетических соображений сначала а-час-тица захватывается ядром алюминия с мгновенным испусканием нейтрона и образованием радиоактивного атома (изотопа фосфора с атомной массой 30), затем этот нестабильный атом (названный радиофосфором) распадается с испусканием позитрона и превращается в уже устойчивый изотоп кремния. Этот новый вид радиоактивности, помимо -лучей, сопровождался испус-
канием античастиц — позитронов. Так им «удалось впервые с помощью внешнего воздействия вызвать у некоторых ядер радиоактивность, которая сохраняется в течение измеримого времени в отсутствие вынуждающей причины». Появились новые изотопы, которые до этого в природе не наблюдались. Открытие искусственной радиоактивности имело большое значение для науки и нашло огромное применение в биологии и практической медицине. К настоящему времени из 2000 радиоактивных изотопов только 300 имеют естественное происхождение.
Опыты по бомбардировке нейтронами ядер тяжелых элементов проводил Ферми. За одно лето 1934 г. он облучил 60 элементов и получил 40 радиоактивных продуктов. Выяснилось, что при захвате ядрами медленных нейтронов могут образовываться радиоактивные изотопы тех же или последующих элементов. Так, при облучении урана найдены изотопы нескольких веществ с периодами полураспада 10 с, 40 с, 13 мин и 100 мин. Ферми отметил, что последние два не являются изотопами элементов между номерами 82 и 92. Так были открыты трансурановые элементы. К 1939 г. было получено около 400 новых радиоактивных веществ. Кроме того, Ферми отметил, что эффективнее действуют «замедленные» (или тепловые) нейтроны, предварительно прошедшие через воду или парафин. Эту кажущуюся парадоксальной ситуацию Ферми объяснил с позиций волновой механики. Ферми собрал группу своих учеников, и они облучили нейтронами 63 элемента, из которых для 37 было установлено явление искусственной радиоактивности.
Возникла идея, что нейтроны (в отличие от а-частиц) могут расколоть ядро на большие осколки. В 1938 г. О. Ган и Ф. Штрас-
230

сман обнаружили барий после бомбардировки нейтронами урана. При этом выделялась энергия порядка 200 МэВ, что соответствовало энергии, связанной с дефектом массы при образовании бария и криптона. Работавшая с ними до прихода нацизма Л. Май-тнер, ее племянник О.Фриш, вынужденные бежать в Копенгаген к Бору, и Ф.Жолио поняли реакцию и употребили первыми термин «деление». 26 января 1939 г. Бор сообщил об открытии деления урана на конференции в Вашингтоне, 30 января в Парижской Академии наук об этом же сообщил Ф. Жолио, а 20 февраля он продемонстрировал эффект «взрыва», заснятого в камере Вильсона (рис. 6.3).
Исследования конца 30-х гг. стимулировали развитие представлений о структуре ядра, которое тогда рассматривали как твердое тело, склеенное из а-частиц и нуклонов. Поэтому столкновение могло упруго выбить лишь их. Бор объяснил деление резонансными явлениями при захвате нейтрона ядром «редкого изотопа урана 235» (в природном уране его только 0,711 %). В 1939 г. ленинградский физик-теоретик Я.И.Френкель дал объяснение этому на основе модели ядра в виде жидкой капли: ядро должно обладать огромным поверхностным натяжением (порядка 1016 Н/м). Капельная модель позволила определить границы устойчивости ядер, попадание нейтрона приводит к электрокапиллярным колебаниям капли, что и вызывает ее деление почти пополам. Впоследствии эту теорию разрабатывали Н. Бор и Дж. Уилер (1940). В том же году были проведены опыты по самопроизвольному делению ядер урана (Г. Н. Флеров, К.А.Петржак), которые доказали наличие этого механизма деления.
Вскоре было обнаружено, что при делении урана появляются свободные нейтроны, которые, попадая в ядро урана, могут вызвать новый процесс деления. Появились и теоретические работы, в которых формулировались конкретные условия для получения ядерной взрывной реакции деления. Наиболее значительных результатов в этом направлении достигли физики-теоретики

231

Я. Б. Зельдович и Ю. Б. Харитон (ученики Н. Н. Семенова), впервые осуществившие расчет цепной реакции деления урана.
Они выделили условия, необходимые для замедления процесса высвобождения ядерной энергии, и писали: «Для осуществления условий цепного взрыва урана необходимо для замедления нейтронов применять тяжелый водород или, может быть, тяжелую воду, или какое-нибудь другое вещество, обеспечивающее достаточно малое сечение захвата. Значительное по сравнению с водородом сечение рассеяния и несколько меньшая эффективность обмена энергией могут компенсироваться ничтожно малым сечением захвата нейтронов и связанной с этим возможностью чрезвычайного разбавления урана... Другая возможность заключается в обогащении урана изотопом 235». Так они показали, что при небольшом увеличении доли более легкого изотопа урана и воды, замедляющей нейтроны, можно в массе урана, большей, чем «критическая», получить постепенное высвобождение огромного количества энергии. Реакцию делают управляемой, замедляя нейтроны с помощью графитовых стержней.
Открытие деления урана ознаменовало начало эры ядерной физики. После того как удалось расщепить ядра урана и плутония, сумели добиться быстрого и интенсивного высвобождения энергии, необходимой для взрыва атомной бомбы.
В 1942 г. под руководством итальянского физика Э.Ферми был запущен первый атомный реактор в США и уже через 4 года в СССР под руководством И.В.Курчатова. Советский атомный реактор стал первым в Европе (1946), он производил искусственное ядерное горючее — плутоний. Потом появились и заводы по обогащению урана легким изотопом . Во время второй мировой войны в Германии и странах антигитлеровской коалиции велись интенсивные работы по созданию атомного оружия. Казалось, овладение таким оружием сможет сразу прекратить войну. Первые атомные бомбы были сброшены американскими летчиками на японские города Хиросиму и Нагасаки в августе 1945 г., продемонстрировав всему миру мощь США. В июне 1946 г. в комиссии ООН по атомной энергии советская делегация внесла проект Международной конвенции «О запрещении производства и применения оружия, основанного на использовании атомной энергии, в целях массового уничтожения».
В декабре 1946 г. в СССР была впервые в Европе осуществлена самоподдерживающаяся цепная реакция в экспериментальном реакторе на тепловых нейтронах, а через полтора года — пущен первый промышленный реактор для наработки оружейного плутония. Тепловыми (медленными) называют нейтроны, обладающие малыми значениями энергии (до 45 МэВ). Медленные нейтроны поглощаются , не выдавая деления, и превращают его в ядро радиоактивного изотопа  с периодом полу-
распада 23 мин; после этого получается ядро трансуранового элемента нептуния , который имеет период полураспада 2,3 сут. Затем получа-
ется  с периодом полураспада 24 100 лет, поэтому его можно накап-
ливать в больших количествах. И несмотря на тяжелые послевоенные годы в СССР в апреле 1949 г. был запущен опытный реактор на тяжелой воде мощностью 500 кВт и началось получение обогащенного . В августе того же года на Семипалатинском полигоне были проведены
232

успешные испытания атомной (плутониевой) бомбы в нашей стране, и монополия США была разрушена. Сборка самой бомбы осуществлялась в 60 км южнее города Арзамас, в лаборатории Арзамас-16 (аналог американской в Лос-Аламосе), которую возглавлял Ю.Б. Харитон. В 1951 г. была взорвана советская атомная бомба, изготовленная из урана-235, и вступил в строй реактор для получения трития — основного изотопа, применяемого при термоядерных реакциях. Годом ранее советские физики предложили изолировать горячую плазму от стенок установки с помощью магнитного поля и сделали необходимые расчеты. Но в СССР не только добились создания атомного оружия — в том же 1951 г. в стране начался серийный выпуск радиоизотопной аппаратуры на изотопе кобальт-60 для нужд промышленности, строительства и медицины.
Для решения научных задач, связанных с созданием водородной бомбы, инициатива создания которой принадлежала Э. Тел-леру, в нашей стране была создана группа во главе с академиком И. Е.Таммом, где наиболее активным и результативным сотрудником оказался А.Д.Сахаров, только что защитивший кандидатскую диссертацию по теории атомного ядра. Хотя общее руководство проектом осуществлялось И.В.Курчатовым, а руководителем работ и главным конструктором был Ю. Б. Харитон, в конструкции бомбы реализованы основополагающие идеи А.Д.Сахарова, и его по праву называют «отцом водородной бомбы». В 1953 г. в Семипалатинске прошли первые в мире испытания водородной бомбы, а затем заработала и первая в мире атомная станция в городе Обнинске мощностью 500 кВт (1954). Хотя при работе реактора используется энергия деления ядер, а не атомов, в популярной литературе сложилась терминология «атомная энергетика», АЭС вместо «ядерная энергетика».
В ядерном топливе заключена огромная концентрация энергии; для сравнения — для обеспечения работы ТЭЦ мощностью 1 млн кВт необходимо расходовать около 4 — 5 млн т угля в год, а для запуска АЭС с реактором ВВЭР-1000 при той же мощности нужно загрузить в реактор примерно 70 г ядерного топлива, меняя в год около 23 г. Хотя мощность этой первой в мире атомной станции была невелика, она явилась хорошей школой для подготовки специалистов по атомной энергетике, а опыт ее безаварийной работы позволил развернуть широкое строительство мощных атомных станций с различными типами реакторов. Так теоретические исследования были воплощены в технологии, укрепили политическое положение страны, обеспечили энергетику. С использованием атомной энергии стали работать и разнообразные транспортные средства.
В 1956 г. на судоверфи адмиралтейского завода в Ленинграде был заложен атомный ледокол «Ленин» с ядерной энергетической установкой, который начал навигацию весной 1960 г. Впоследствии атомные энергетические установки были с успехом использованы на ледоколах «Арктика»,
233

«Сибирь», контейнеровозе «Севморпуть» и других, а затем и на атомных подводных лодках, составлявших гордость советских ВМС. В 1958 г. был объявлен первый советский односторонний мораторий на испытание атомного оружия, начала работу экспериментальная термоядерная установка «Огра». В 70-е годы был запущен первый в мире термоэмиссионный реактор-преобразователь «Топаз-1». А разработанные изотопные генераторы и плазменные двигатели успешно работали на космических аппаратах «Кос-мос-34», «Космос-90», «Зонд-2», «Луноход-1», «Луноход-2» и др. В 1975 г. была проведена первая в мире операция по вживлению в организм радиоизотопного кардиостимулятора. Была запущена импульсная термоядерная установка «Ангара» (1983) и термоядерная установка «Токамак» (1988).

6.5. Представления о строении атомного ядра

В экспериментально установленном Резерфордом (1911) ядерном строении атома были две частицы — ядро и электрон. Появилась гипотеза строения атома из этих двух частиц. Ядро характеризовалось зарядом и массой. Заряд ядра равен +Ze, где Z — атомный номер, совпадающий с номером в Периодической системе элементов Д.И.Менделеева; +е — элементарный заряд ядра; масса ядра примерно равна А, где А — массовое число; тР — масса протона, равная 938,28 МэВ, а масса электрона — 0,511 МэВ. Протон имеет спин, равный 1/2, и собственный магнитный момент
 — единица магнитного момента, называемая ядерным магнетоном. Казалось бы, модель ядра построить нетрудно при заданных А и Z, в нем А протонов и AZэлектронов. Но она противоречива. Так, например, для азота = 14, Z= 7) в ядре должно быть 14 протонов и 7 электронов, т.е. из 21 частицы с полуцелым спином s= 1/2. Но эксперимент дает s= 1 (спин ядра азота равен единице).
Атомное ядро состоит из протонов и нейтронов. Масса нейтрона тп = 939,57 МэВ, т.е. близка к массе протона (тп - тР = = 1,3 МэВ), что соответствует 2,5 те. Заряд нейтрона равен нулю, а спин s= (1/2), нейтрон обладает и собственным магнитным моментом Здесь знак «-» означает, что направления собственного магнитного и механического моментов у нейтрона противоположны. В свободном состоянии нейтрон оказался нестабильным — он самопроизвольно распадается (с периодом полураспада 12 мин), превращаясь в протон и электрон, испуская еще одну частицу — антинейтрино: Масса нейтрино чрезвычайно мала, она много меньше даже массы электрона. Масса нейтрона превышает массу протона на 2,5 те, поэтому можно сказать, исходя из закона сохранения массы при этом превращении нейтрона, что она больше, что масса протона, электрона и нейтрино на 1,5 масс электрона, или на 0,77 МэВ. Эта энергия и выделяется при распаде нейтрона в виде кинетической энергии образующихся частиц.
234

Таким образом, в протонно-нейтронной модели ядра оно характеризуется своим зарядовым числом Z, равным числу протонов в ядре, при этом число нейтронов N = А - Z. Поэтому ядра (элемента X) и обозначают символом вида Ядра с одинако-
вым зарядовым числом (или порядковым номером в Периодической системе) и разными А называют изотопами. Например, у кислорода есть три стабильных изотопа: А = 16, 17, 18; у водорода тоже три: А - 1, 2, 3. Все изотопы водорода имеют одинаковые свойства, отличаясь только массами. У более тяжелых элементов, например урана-235, в ядре 92 протона и 143 нейтрона. В природной смеси на долю урана-235 приходится всего 1/144 от урана-238. Безусловно, относительная разница в массе невелика, и проблема отделения одного изотопа от другого усложняется. Но большинство элементов в природе встречается именно в смеси изотопов.
Размеры ядер Ф, где Ф (ферми) —
единица длины, используемая в ядерной физике, равная 10-15 м. Спин ядра определяется сложением из спинов нуклонов, каждый из которых равен (1/2), поэтому он зависит от числа нуклонов в ядре. Когда в 1932 г. выяснилось, что ядро фактически состоит из протонов и нейтронов, вопрос о природе ядерных сил приобрел важное значение. Действие ядерных сил не наблюдается в макроскопических масштабах, приходится предполагать существование сил, в сотни раз превышающих действие электрических сил и вызывающих притяжение нуклонов друг к другу. Эти мощные силы действуют на очень коротких расстояниях, так что далее 10-14 м их действие не ощущается. Но ядра прочны и стабильны, и существуют опыты по рассеянию нуклонов. Неустойчивы только ядра элементов, расположенных в конце Периодической системы элементов. Теория ядерных сил должна дать объяснения этому. Но когда стало известно, что ядра могут делиться и превращаться в другие ядра, еще острее встал вопрос о том, что же удерживает их вместе.
Масса ядра оказалась меньше суммы масс входящих в него частиц. Это связано с тем, что при объединении нуклонов в ядро выделяется энергия их связи друг с другом. Как известно из СТО, энергия покоя частицы связана с ее массой соотношением: Е = тс2. Это означает, что энергия покоящегося ядра меньше суммарной энергии невзаимодействующих нуклонов. Эта разница составляет величину: Она называется энерги-
ей связи в ядре и равна работе, которую нужно совершить для того, чтобы разделить нуклоны в ядре и разнести их на расстояния, где они бы не взаимодействовали. Энергия связи, приходящаяся на один нуклон, называется удельной энергией связи в ядре, величина — дефектом массы ядра. Дефект массы связан с энергией соотношением А = Есв/с2. Приведем оценки атома гелия. В состав ядра входят 2 протона и 2 нейт-
235

рона, масса атома равна 3728,0 МэВ; масса атома водорода — 938,7 МэВ, а нейтрона — 939,57 МэВ. Подставив эти значения в формулу для энергии связи, получим: Есв = (2 • 938,7 + + 2 • 939,5) - 3728,0 = 28,4 МэВ. Если это значение разделить на число нуклонов, получим 7,1 МэВ, тогда как энергия связи валентных электронов порядка 10 эВ, т.е. в миллион раз меньше. Если найти значения удельной энергии связи для других элементов, то она в зависимости от массового числа будет иметь вид, изображенный на рис. 6.4. График имеет отдельные пики и провалы для определенных изотопов. Энергия связи на один нуклон в общем растет с увеличением атомного номера, но для определенных комбинаций получаются исключения, которые можно как-то объяснить, считая, что при контактном взаимодействии достигается большая связь между нуклонами, т.е. нуклоны на поверхности ядра меньше связаны, чем внутри него. При числе нуклонов более пятидесяти, по-видимому, начинает проявляться и кулоновское отталкивание, так что полная энергия связи на нуклон уменьшается.
При расщеплении ядер с большими номерами можно получить ядра с меньшими номерами и выделить при этом энергию. Например, разделяя ядро 235U на два меньших, на что тоже нужна энергия (энергия связи на нуклон примерно равна 7,6 МэВ у 235U, a у ядер средних размеров — 8,6 МэВ, т.е. разница на один нуклон составляет 1 МэВ), на каждое ядро урана получим 200 МэВ при расщеплении его на два меньших, например барий и криптон. Но самопроизвольно этот процесс не начинается, он должен быть запущен. В случае с 235U таким спусковым крючком служит захват ядром нейтрона, а далее реакция идет сама по типу цепной реакции деления. Ядра с несбалансированным числом протонов и нейтронов могут (при определенных условиях) превращаться в другие ядра, испуская ядро атома гелия (а-частицу) или электрон (+ или -, так называемый процесс распада), или остаться после испускания частицы в возбужденном состоянии, а потом испустить у-квант. Тяжелые радиоактивные элементы распадаются поочередно этими способами, образуя ветви или радиоактивные семейства. Спадение кривой для тяжелых элементов связано с ростом куло-новского отталкивания между протонами. Наличие систематического хода кривой с максимумом при А порядка 50—60 (в середи-
236

не Периодической системы элементов Д. И. Менделеева: от криптона до цинка) показывает, что эти элементы обладают наибольшей связью и наиболее устойчивы. Их энергия связи достигает 8,6 МэВ/нуклон, тогда как у урана — 7,5 МэВ/нуклон. Такая зависимость делает возможными два процесса: деление тяжелых ядер на несколько легких и синтез легких ядер в одно ядро. Оба эти процесса должны сопровождаться выделением большого количества энергии. Так, деление ядра с массовым числом А - 240 (с удельной энергией связи 7,5 МэВ) на два пополам с А = 120 (удельная энергия связи равна 8,5 МэВ) привело бы к высвобождению энергии в 240 МэВ. Реакция синтеза двух ядер тяжелого водорода с А = 2 в ядро гелия привела бы к выделению энергии в 24 МэВ. Для сравнения, сгорание угля до СО2 (соединение углерода с двумя атомами кислорода) дает всего 5 эВ.
Особая устойчивость ядер в середине Периодической системы химических элементов объяснима. Для расщепления тяжелого ядра атома на части необходимо пройти ряд промежуточных стадий, для чего требуется дополнительная энергия — энергия активации. Она может быть сообщена тяжелому ядру захваченным им дополнительным нейтроном. Такой процесс при захвате нейтрона ядром урана или плутония лежит в основе реакции деления в ядерных реакторах или атомной бомбы. В обычных условиях атомы не распадаются, им неоткуда получить дополнительную энергию. Для того чтобы произошло слияние легких ядер, они должны подойти на расстояние порядка 10-15 м, но такому сближению препятствует кулоновское отталкивание между ними. Чтобы преодолеть его, ядра должны двигаться с огромными скоростями, соответствующими температурам в сотни миллионов кельвин. Поэтому реакции синтеза и называют термоядерными, такие реакции происходят в недрах Солнца и звезд, в водородных бомбах.
Согласно капельной модели ядра, малый радиус действия ядерных сил (как у межмолекулярных сил жидкости) и примерное постоянство средней энергии связи на нуклон были использованы Я.И.Френкелем в модели ядер с большим числом нуклонов. Из-за заряда протонов «капля» стала наэлектризованной. Так как энергия связи уменьшается с увеличением номера элемента, а начиная со значения z= 83 ядра вообще теряют устойчивость, ядерные силы должны быть очень близкодействующими и подчиняться принципу Паули (если пара протонов с противоположно направленными спинами находится в каком-то определенном состоянии, то следующий протон должен занять место с большей энергией), и рост ядра ограничивается. Как только энергия возрастает, устойчивость ядра уменьшается. Квантовая теория строго ограничивает энергетические процессы в ядрах.
Поскольку взаимодействие между заряженными частицами переносится через электромагнитное поле, которое можно предста-
237

вить и совокупностью фотонов, то говорят, что это взаимодействие осуществляется через обмен фотонами. Каждая частица создает вокруг себя поле, непрерывно испуская и поглощая фотоны. Но это модельное описание не следует понимать буквально, происходит обмен не реальными фотонами, а воображаемыми, виртуальными. В силу принципа неопределенности этот испущенный фотон будет вскоре поглощен, иначе нарушится закон сохранения энергии. В самом деле, энергия электрона и испущенного виртуального фотона больше энергии покоящегося электрона, но это нарушение кажущееся — длительность такого нарушения не должна превышать величину Тогда это нарушение не будет обнаружено, т. е. оно виртуально. Реальный фотон может быть испущен лишь при поступлении дополнительной энергии. Можно оценить расстояние, на которое этот виртуальный фотон успеет передать взаимодействие за это время:  Поскольку энергия фотона может быть сколь угодно мала (зависит от частоты), радиус действия электромагнитных сил неограниченный. Если бы частицы, осуществляющие обмен (взаимодействие), имели массу покоя, то радиус действия их был бы ограничен:
 Это — так называемая комптоновская длина волны. Для электрона она составляет 3,86 10-13 м, что в 100 раз превышает радиус действия ядерных сил.
Сначала (1934) в качестве виртуальных частиц, переносящих взаимодействия в ядре, И.Е.Тамм предложил электрон. Но величина их оказалась недостаточна для сохранения ядер. В качестве ядерного клея японский физик Хидэки Юкава предложил в 1935 г. гипотетическую частичку мезон, массу которой он оценил (200... 300)те. Через два года американские физики Андерсон и Неддермейер обнаружили в космических лучах реальные частицы с массой 207 те, промежуточной между массами протона и электрона. Но оказалось, что это не те частицы, которые предложил Юкава (ему требовались другие свойства), и такие частицы (их называют -мезонами, или пионами) были обнаружены только в 1947 г. Они имеют массу 273 те. Именно на эти частицы — пионы, предсказанные гениальной интуицией, падает функция поддерживания взаимодействия в ядре. Протон превращается в нейтрон, периодически испуская пион, поэтому его можно представить наглядно имеющим нейтронное ядро и мезонную оболочку.
Теория пришла в согласие с данными наблюдений. Она получила название теории Тамма—Юкавы. Исследования природы ядерных взаимодействий продолжаются более полувека. Многие их свойства можно описать с помощью моделей, использующих разного вида потенциальные ямы, при этом непрерывно вносятся уточнения в связи с появлением новых экспериментальных данных. Во многих атомных явлениях ядро можно представить массивной заряженной частицей, не имеющей внутреннего строения.
238

Сферическую оболочечную м о д е л ь атомного ядра предложили в 1949 г. Мария Гепперт-Майер и Йоханнес Йенсен. Их идея состояла в том, чтобы применить для анализа движения нуклонов в ядре те же принципы квантовой механики, что и к вращающимся электронам в атоме. Так как существует принцип Паули, ядро строится путем последовательного заполнения оболочек нейтронами и протонами, причем заполнение начинается с состояний с наименьшей энергией. В атомах заполнение электронных оболочек приводит к появлению инертных газов. Похожая ситуация и в ядрах — при определенных числах протонов или нейтронов возникает ядро с «жесткой» сферической формой. Эти числа — 2, 8, 20, 28, 40, 50, 82, 126, 184 — назвали магическими. Ядра, имеющие два магических числа, особенно устойчивы, пример тому кислород-16: 8 протонов и 8 нейтронов.
Коллективная модель ядерной деформации, в которой рассматриваются форма и структура атомного ядра, была предложена в 1952 г. О. Бором и Б. Маттельсоном. Она сходна с моделью жидкой капли. Квантово-механические расчеты определяют форму капли и области минимумов энергии, что связывается с устойчивостью и неустойчивостью ядер. Изучение таких коллективных движений в ядрах привело к гипотезе о существовании внутри ядер неких кластеров, из которых вылет каких-либо частиц вероятен.
Итак, четыре силы в природе ответственны за все известные взаимодействия частиц. Перечисленные типы взаимодействий имеют, видимо, разную природу. К настоящему времени неясно, исчерпываются ли ими все взаимодействия в природе. Самым сильным является короткодействующее взаимодействие, электромагнитное слабее его на два порядка, слабое — на 14 порядков, а гравитационное — самое слабое, оно меньше сильного на 39 порядков. В соответствии с величиной силы взаимодействия они происходят за разное время. Сильные ядерные взаимодействия происходят при столкновении частиц с околосветовыми скоростями, и время реакций, определяемое делением радиуса действия сил на скорость света, дает величину порядка 10-23 с. При слабом взаимодействии процессы происходят медленней — за 10-9 с. Характерное время для гравитационного взаимодействия — порядка 1016 с, или 300 млн лет.

6.6. Элементарные частицы и проблема поиска «первичных объектов»

Элементарными называют частицы, входящие в состав прежде «неделимого» атома. Первыми были обнаружены электрон, протон, нейтрон и фотон — квант электромагнитного поля. Из пер-
239

вых трех строили вещество, а фотон осуществлял взаимодействие между ними. Считали, что они ни на что далее не могут быть разложены и потому являются «первичными кирпичиками» мироздания. Потом оказалось, что эти элементарные частицы имеют внутреннюю структуру и могут друг в друга превращаться. После второй мировой войны благодаря мощной технике было открыто еще много частиц, претендующих на «элементарность». У каждой частицы, кроме фотона, оказалась еще и античастица. Сейчас элементарных частиц уже более трехсот. К ним относят и те частицы, которые получают на мощных циклотронах, синхротронах и других ускорителях. Есть элементарные частицы, возникающие при прохождении через атмосферу космических лучей, они существуют несколько миллионных долей секунды, потом распадаются, видоизменяются, превращаясь в другие элементарные частицы, или испускают энергию в форме излучения.
Современная наука выявила единство на самом глубоком уровне: наблюдаемое вещество состоит из фотонов, лептонов (электроны, мюоны, нейтрино) и кварков. Помимо переносимых фотонами электромагнитных взаимодействий существуют сильные ядерные взаимодействия, связывающие кварки в барионы (протоны, нейтроны и пр.) и мезоны. Слабые ядерные взаимодействия ответственны за распад нейтронов, например. Все они описываются единой нелинейной теорией, обобщающей уравнения Максвелла. Такое обобщение было сделано в 1954 г. Ч.Янгом и Р. Миллсом, и другие обобщения называются также теорией Янга — Миллса. Ранее подобные теории выдвигали Г. Ми и М. Борн, А. Эйнштейн и Я. И.Френкель. Хотя проблема элементарных частиц связана с самими основами науки, их изучение ведется в некотором отрыве от других областей физики.
Основными характеристиками элементарных частиц являются масса, электрический заряд, спин, среднее время жизни, магнитный момент, пространственная четность, барионный заряд и квантовые числа.
Масса элементарных частиц — это масса покоя, поскольку она не зависит от состояния движения. Ее определяют по отношению к массе покоя электрона mе, самой маленькой из масс покоя. Нейтрон и протон тяжелее электрона почти в 2000 раз. Но есть и очень тяжелые частицы, например Z-частицы, получаемые на ускорителях, с массой покоя 2 000 000 те. Фотоны вообще не имеют массы покоя. По массе частицы делят на лептоны (электрон и нейтрино); мезоны (с массой от 1 до 1000 те); барионы (с массой более 1000 те). В состав барионов входят протоны, нейтроны, гипероны и др.
Электрический заряд меняется от нуля до «+» или «-». Каждой частице, кроме фотона, нейтрино и двух мезонов, соответствует частица с противоположным зарядом, или античастица. В 1963 г.
240

была высказана гипотеза о существовании частиц с дробным зарядом — кварков.
Спин — одна из важнейших характеристик элементарных частиц. Она определяется собственным моментом импульса частицы. Спин фотона равен 1; это означает, что частица примет тот же вид после полного оборота на 360°. Частица со спином — 1/2 примет прежний вид при обороте, в 2 раза большем, т. е. в 720°. Спин протона, нейтрона и электрона — 1/2. Существуют частицы со спином 3/2, 5/2 и т.д. Частица со спином, равным нулю, одинаково выглядит при любом угле поворота. В зависимости от значения спина все частицы делят на две группы:
фермионы (название дано в честь Энрико Ферми) — с полуцелыми (1/2, 3/3, ...) спинами. Фермионы составляют вещество и, в свою очередь, делятся на два класса — лептоны (от греч. leptosлегкий) и кварки. Кварки входят в состав протонов, нейтронов и других подобных им частиц, называемых в совокупности адрона-ми (от греч. adros— сильный). Заряженные лептоны могут так же, как и электроны, вращаться вокруг ядер, образуя атомы. Лептоны, не имеющие заряда, могут, как и нейтрино, проходить сквозь всю Землю, ни с чем не взаимодействуя. У каждой частицы есть и античастица, отличающаяся только зарядом;
бозоны (названные в честь индийского ученого Шатьендраната Бозе, одного из создателей квантовой статистики) — это частицы с целыми спинами (0, 1, 2), бозоны переносят взаимодействие.
Между частицами существуют четыре типа взаимодействий, каждое из которых переносится своим типом бозонов: фотон, квант света — электромагнитные взаимодействия, гравитон — силы тяготения, действующие между любыми телами, имеющими массу. Восемь глюонов переносят сильные ядерные взаимодействия, связывающие кварки. Промежуточные векторные бозоны переносят слабые взаимодействия, ответственные за некоторые распады частиц. Считается, что к этим четырем взаимодействиям сводятся все силы в природе. Одним из самых ярких достижений нашего века стало доказательство того, что при очень высоких температурах (или энергиях) все четыре взаимодействия сливаются в одно.
При энергии 100 ГэВ (109 эВ) объединяются электромагнитное и слабое взаимодействия. Такая энергия соответствует температуре Вселенной через 10-10 с после Большого Взрыва, и в 4 триллиона раз выше комнатной. Это открытие позволило предположить, что при энергии порядка 1015 ГэВ можно достичь объединения с ними сильных взаимодействий, как это утверждается в Теориях Великого Объединения (ТВО), а при энергии 1019 ГэВ к взаимодействиям ТВО присоединится и гравитационное взаимодействие, «образуя» ТВС (Теорию Всего Сущего).
Ускорителей, на которых можно получить такие энергии и проверить эти теории, пока нет и не предвидится, поэтому обра-
241

щаются к Вселенной, чтобы найти в ней возможные ограничения для огромного числа элементарных частиц. В последние тридцать лет между физикой элементарных частиц и космологией существует тесная связь. Совокупность астрофизических данных можно рассматривать как «экспериментальный материал», накопленный в результате работы Вселенной — гигантского ускорителя частиц. Мы можем иметь дело только с косвенными следствиями происходивших и происходящих процессов, с усредненным по всей Вселенной результатом их влияния на эволюцию материи.
Среди лептонов наиболее известен электрон, вероятно, он не состоит из других частиц, т. е. элементарен. Другой лептон — нейтрино. Это самый распространенный лептон во Вселенной и в то же время самый неуловимый. Нейтрино не участвует ни в сильном, ни в электромагнитном взаимодействиях. После предсказания нейтрино было обнаружено только через 30 лет на ускорителях. Нейтрино бывает трех видов — электронное, мюонное и тау-нейтрино. Мюон — тоже широко распространенный в природе лептон. Он был обнаружен в космических лучах в 1936 г.; это нестабильная частица, а в остальном он похож на электрон. За две миллионные доли секунды он распадается на электрон и два нейтрино. Фоновое космическое излучение в большей части состоит из мюонов. В конце 70-х гг. был обнаружен третий заряженный лептон (кроме электрона и мюона) — тау-лептон. Он ведет себя очень похоже на своих собратьев, но тяжелее электрона в 3500 раз. У каждого лептона есть и античастица, т.е. всего их 12.
Адронов существует очень много, их сотни. Поэтому часто их считают не элементарными частицами, а составленными из других. Они бывают электрически заряженными и нейтральными. Все адроны участвуют в сильном, слабом и гравитационном взаимодействиях. Среди них самые известные — протон и нейтрон. Остальные живут очень мало, распадаясь за 10-6 с за счет слабого взаимодействия или за 10-23 с — за счет сильного. Адроны рассортировали по массе, заряду и спину. В этом помогла гипотеза кварков, или частиц, составляющих адроны.
Кварки могут соединяться для этого тройками, составляя барионы, либо парами: кварк—антикварк, составляя мезоны (промежуточные частицы). Кварки имеют заряд 1/3 или 2/3 заряда электрона. Тогда в комбинации они дадут 0 или 1. Все кварки имеют спин, равный 1/2, т.е. они относятся к фермионам. Считают, что они сцепляются сильным взаимодействием, но участвуют и в слабом. Особенности сильного взаимодействия характеризуют типами («ароматами») — «верхний», «нижний», «странный». Но слабое взаимодействие может поменять «аромат» кварка. Например, при распаде нейтрона один из «нижних» кварков становится «верхним», а избыток заряда уносит рождающийся электрон. Так что сильное взаимодействие не может менять «аромат», а без изменения «аромата» кварка невозможен распад адрона.
Новый адрон, названный -частицей, был обнаружен на ускорителях (1974). Поэтому в соответствии с теорией кварков ввели еще одну характеристику, четвертый «аромат», так появился «очарованный» кварк. Так что -частица — это предположительно мезон, состоящий из с-кварка и с-антикварка. Сейчас обнаружено уже много «очарованных» частиц, и все
242

они тяжелые. А в 1977 г. появился -мезон, и вся история повторилась, пятый аромат получил название «прелестный». Так развивается ныне атомистика. Сейчас считают, что существуют 12 кварков — фундаментальных частиц и столько же античастиц. Шесть частиц — это кварки с экзотическими именами «верхний», «нижний», «очарованный», «странный», «истинный», «прелестный». Они являются порождением теории, стремящейся к упорядоченности и красоте, и открыты все, за исключением «истинного». Остальные шесть — лептоны: электрон, мюон, -частица и соответствующие им нейтрино (электронное, мюонное, нейтрино).
Эти 12 частиц, или две по шесть, группируют в три поколения, каждое из которых состоит из четырех членов. В первом поколении — «верхний» и «нижний» кварки, электрон и электронное нейтрино, во втором — «очарованный» и «странный» кварки, мюон и мюонное нейтрино, в третьем — «истинный» и «прелестный» кварки и -частица со своим нейтрино. Все обычное вещество состоит из частиц первого поколения. Протон, например, состоит из двух «верхних» кварков и одного «нижнего», нейтрон — из двух «нижних» и одного «верхнего». Каждый атом состоит из тяжелого ядра (сильно связанных протонов и нейтронов), окруженного электронным облаком.
Но почему существуют другие поколения частиц и сколько их еще может быть? По мнению японских физиков М. Кобаяси и Т. Маскава, асимметрия между веществом и антивеществом требует наличия трех поколений. Если же число поколений не ограничено, являются ли кварки и лептоны основными «кирпичиками природы» и насколько они фундаментальны? Последние данные, полученные на разных ускорителях, позволяют считать, что число поколений не может быть более пяти, так как полное число нейтрино не превышает этого числа. Ответы на эти вопросы ищут в современной космологии, в моделях первичного нуклеосинтеза, породившего те или иные частицы, часть которых может быть установлена по распространенности того или другого элемента во Вселенной. Эти исследования дают человеку возможность прикоснуться к тайне мироздания, найти те «кирпичики», из которых построено все в мире, а за ними стоят и новые технологии.
Вопросы для самопроверки и повторения

  1. Какие частицы составляют ядро атома, каковы его размеры? Как это было установлено?
  2. Поясните понятие элементарной частицы, как классифицируются элементарные частицы и как они исследуются. Что такое «античастицы»? В чем состоит гипотеза кварков? Какие проблемы стоят в теории элементарных частиц?
  3. В чем заключается единство дискретности и непрерывности? Охарактеризуйте проблему поиска «первичных объектов» и концепцию атомизма. Что такое «квазичастицы»?

243

  1. Какова специфика микромира по сравнению с изучением мега- и макромира. Поясните принципы соответствия и дополнительности.
  2. Поясните принцип неопределенности, понятия детерминизма и индетерминизма. Как изменились представления о случайном и закономерном? Поясните роль прибора в квантовой механике.
  3. Как развились представления о причинности в квантовой механике? Почему ограничение воздействия на микроуровне имеет смысл фундаментального закона природы?
  4. Какими параметрами описывается состояние микрочастицы? Как при этом осуществляется синтез волновых и корпускулярных свойств? Каково отличие в описании состояния в классической и квантовой механике?
  5. Какое уравнение описывает движение в микромире и соответствует второму закону Ньютона? Какой смысл имеют входящие в него величины?
  6. Какие модели описывают строение и свойства атомных ядер? Почему тяжелые элементы не распадаются самопроизвольно на легкие? Какие реакции деления возможны и какие для этого необходимы условия?
10.            Поясните, чем определяется устойчивость атомных ядер. Что такое
«дефект массы» и как происходят реакции в недрах звезд?
.

Ваш комментарий о книге
Обратно в раздел Наука












 





Наверх

sitemap:
Все права на книги принадлежат их авторам. Если Вы автор той или иной книги и не желаете, чтобы книга была опубликована на этом сайте, сообщите нам.