Библиотека
Теология
Конфессии
Иностранные языки
Другие проекты
|
Ваш комментарий о книге
Бройль де Луи. Революция в физике
Глава IX. Квантовая механика Гейзенберга
1. Основные идеи Гейзенберга
Первая работа Гейзенберга по квантовой механике появилась в 1925 г., когда уже были сформулированы первые идеи волновой механики, но еще не были опубликованы статьи Шредингера. Правда, казалось, что цель Гейзенберга совершенно отличается от той, которую ставил себе Шредингер. Основные идеи Гейзенберга не имели фактически никакой видимой связи с теми, которые положили начало успехам волновой механики, а развитый им формализм имел весьма специальный вид.
Рассмотрим идеи, которыми руководствовался Гейзенберг. Как мы знаем, Гейзенберг принадлежал к «копенгагенской школе», которая сформировалась вокруг Бора. Свои первые шаги в науке он посвятил применению метода соответствия. Поэтому вполне естественно, что сам дух этого метода, сколь оригинального, столь и глубокого, насквозь пропитал его мысли. Одна из существенных идей, возникших из изучения принципа соответствия, заключалась в следующем. В то время как классическая теория выражает величины, относящиеся к квантованной системе, в виде разложения в ряд Фурье, члены которого соответствуют непрерывному и одновременному испусканию различных излучений, квантовая теория разлагает те же величины на элементы, отвечающие различным возможным переходам атома, причем каждый из этих элементов связан с дискретными и индивидуальными актами испускания излучения. Как мы уже поясняли раньше, цель знаменитого боровского принципа заключалась в установлении соответствия, по крайней мере асимптотического, между этими двумя столь различными представлениями.
По-видимому, Гейзенберг столкнулся с тем обстоятельством, что при переходе от классической точки зрения к квантовой нужно разложить все физические величины я свести их к набору отдельных элементов, соответствующих различным возможным переходам квантованного атома. Отсюда идея, на первый взгляд весьма сомнительная: представлять каждую физическую характеристику системы таблицей чисел, аналогичной той, которую математики называют матрицей. Подобно этому в классической теории ряды Фурье представляют собой разложение физической величины на бесконечные множества дискретных элементов, причем вся совокупность этих элементов изображает рассматриваемую величину. Конечно, эти элементы должны удовлетворять некоторым условиям, а именно, для больших квантовых чисел классические и квантовые разложения должны асимптотически совпадать. Как показал Бор, этим устанавливается соответствие между различными переходами и компонентами классического ряда. Фурье.
Гейзенберг увидел еще одно преимущество этого нового представления величин набором матричных элементов; он надеялся, применяя его, исключить из теории ненаблюдаемые величины, которые обременяли прежнюю квантовую теорию. Пользуясь довольно громоздким выражением, взятым из философского словаря, он занял строго феноменологическую позицию и хотел исключить из физической теории все, что нельзя наблюдать непосредственно.
Зачем нужно вводить в наши атомные теории положение, скорость или траекторию атомных электронов, если мы все равно не можем ни измерять эти характеристики, ни наблюдать их? Единственно, что нам известно об атоме – это его стационарные состояния, переходы между ними и излучения, которые сопровождают эти переходы. Поэтому в наши расчеты нужно вводить только величины, связанные с этими реально наблюдаемыми величинами. Такую задачу поставил себе Гейзенберг. В его матрицах элементы располагаются в строки и столбцы, причем каждый из них имеет два индекса: один соответствует номеру столбца, другой – номеру строки. Диагональные элементы, т.е. те индексы которых совпадают, описывают стационарное состояние. Недиагональные элементы с разными индексами описывают переходы между стационарными состояниями, соответствующими этим индексам. Что же касается величины этих элементов, то ее нужно связать по формулам, полученным с помощью принципа соответствия, с величинами, характеризующими излучение при этих переходах. Таким путем будет создана теория, в которой все величины будут описывать наблюдаемые явления.
Конечно, было бы удивительно, если бы Гейзенбергу действительно удалось исключить из теории все ненаблюдаемые величины. Наличие в формализме его квантовой механики матриц, изображающих координаты и импульсы атомных электронов, оставляет в этом смысле некоторые сомнения. Однако эта попытка Гейзенберга, даже если ему и не удалось полностью выполнить свою философскую программу, привела к созданию новой механики, механики совершенно особого вида. Она дала замечательные результаты и представляет собой значительную ступень в развитии новых квантовых теорий.
2. Квантовая механика
Очень трудно даже совершенно поверхностно излагать квантовую механику, не пользуясь математическим формализмом, потому что можно сказать, сущность этой новой механики заключается именно в ее формализме. Тем не менее мы попытаемся дать читателю хотя бы смутное представление о том, что такое квантовая механика, механика матриц, рождением которой мы обязаны Гейзенбергу, а дальнейшим развитием – Гейзенбергу, Борну в Иордану.
Итак, Гейзенбергу принадлежит идея замены физических величин, с которыми имеют дело в атомной теории, таблицами чисел, матрицами. Исходя из принципа соответствия, он пытался вначале установить правила сложения и умножения различных матриц, каждую из которых нужно рассматривать как единое математическое целое. Он обнаружил, что эти правила сложения и умножения в точности совпадают с правилами для матриц, которыми пользовались математики в теориях алгебраических уравнений и линейных преобразований. Этот результат, a priori, отнюдь не очевидный, очень упростил задачу, ибо свойства алгебраических матриц были уже с давних пор хорошо известны.
Необычным оказалось одно свойство этих матриц – произведение их некоммутативно, оно зависит от порядка сомножителей. Произведение первой матрицы на вторую не равно произведению второй на первую.
Таким образом, Гейзенберг представил физические величины числами, не обладающими свойством коммутативного умножения. Этот факт можно рассматривать как самую основу квантовой механики, и Дирак в своей первой работе отстаивал именно эту точку зрения. Он считал, что переход от классической физики к квантовой заключается просто в представлении физических величин не обычными числами, а квантовыми числами, произведение которых не обладает свойством коммутативности.
Огромное большинство физиков того времени находило, что произвести подобную замену далеко не так просто.
Гейзенберг должен был найти также способ введения в свою теорию кванта действия, И снова он пошел по пути, которым постоянная h была введена в классические уравнения старой квантовой теорией, и попытался с помощью принципа соответствия перенести этот способ введения h в свою новую механику.
Результат оказался очень точным, хотя на первый взгляд несколько удивительным. Нужно было предположить, что при перемножении матрицы, соответствующей координате, на матрицу, соответствующую канонически сопряженной компоненте импульса, порядок множителей не безразличен и что разность между произведением этих двух величин, взятых в одном порядке, и их произведением в противоположном порядке равна постоянной Планка, умноженной на некоторое число.
Все другие канонические переменные квантовой механики коммутируют между собой, т.е. их произведение не зависит от порядка сомножителей. Только когда рассматриваются произведения двух величин, канонически сопряженных в смысле аналитической механики, в результате их перестановки получается величина, отличающаяся от исходной так, что их разность пропорциональна h. В макроскопических явлениях, где величиной h можно пренебречь, все механические величины можно считать коммутирующими, и мы снова, как и должно быть, возвращаемся к классической механике. Такой путь введения постоянной Планка с помощью коммутационных соотношений, хотя и естественный, с точки зрения Гейзенберга, может показаться несколько странным. Ниже мы увидим, как можно его объяснить в волновой механике.
Уточнив таким образом свойства матриц, представляющих физические величины, Гейзенберг должен был вывести уравнения, описывающие их изменение со временем: иными словами, он должен был построить динамику. Он сделал это, смело предположив, что его матрицы подчиняются уравнениям, по виду совпадающим с уравнениями классической механики.
Согласно этой гипотезе для матриц можно написать канонические уравнения Гамильтона.
Однако эта идентичность динамических уравнений скорее кажущаяся, чем реальная, ибо в классической механике в уравнениях фигурируют обычные числа, а в механике Гейзенберга – матрицы. В этом корень важнейших различий. Тем не менее можно показать, что канонические уравнения квантовой механики позволяют вновь получить принцип сохранения энергии, и они не противоречат боровским соотношениям для частот. Кроме того, для атомных систем эти уравнения по причинам, на которых мы не можем здесь останавливаться, удовлетворяются лишь для некоторых определенных значений энергии. Итак, мы снова приходим к существованию стационарных состояний с квантованной энергией, и у нас есть метод вычисления этих энергий.
Сразу применив свой метод к самым классическим квантовым системам, Гейзенберг и его соратники вычислили квантованную энергию линейного осциллятора, атома водорода и т.д. Часто их результаты оказывались в полном согласии со старой квантовой теорией, однако иногда совершенно от них отличались. Гак, например, в случаях линейного осциллятора, они получили вместо закона целых квантов, который предполагал Планк, закон полу целых квантов, о котором мы уже упоминали и который лучше согласуется с экспериментальными фактами.
Воодушевленные очень интересными результатами квантовой механики, строгостью и точностью ее формализма, толпы теоретиков бросились вслед Гейзенбергу, внося в его теорию все новые важные дополнения.
Шредингер опубликовал свою работу и с изумлением заметил, что метод квантования волновой механики ведет к тем же результатам, что и метод квантовой механики, хотя они различаются по духу. Он интуитивно почувствовал, что этот факт не случаен, и блестяще сумел объяснить его.
3. Тождество квантовой и волновой механики
В своей работе Шредингер руководствовался идеей, что с помощью волновой функции волновой механики можно построить величины, обладающие свойствами матриц квантовой механики. При этом квантовая механика оказывается методом, позволяющим вычислять эти величины и оперировать ими, не обращаясь явно к волновой функции. Таким образом, можно доказать идентичность этих двух форм новой механики.
Изучая проблему квантования в волновой механике, находят различные стационарные волны рассматриваемой системы и вычисляют соответствующие волновые функции. Эти функции называются собственными функциями системы: они образуют некую, как будем предполагать, дискретную последовательность. Во многих важных случаях это действительно так. Допустим теперь, что мы скомбинировали эти собственные функции во всевозможные пары. Получим, таким образом, два типа пар: пары, построенные из одинаковых собственных функций, и пары из различных собственных функций. Первые относятся к одному стационарному состоянию, вторые – к двум различным стационарным состояниям. Поэтому можно считать, что последние описывают переход между этими двумя стационарными состояниями.
Таким образом, из этих парных комбинаций волновых функций получим набор элементов, который можно поставить в однозначное соответствие с элементами гейзенберговской матрицы. Но поскольку, согласно Гейзенбергу, каждой физической величине отвечает своя матрица, то, следовательно, для каждой величины мы должны образовать разные комбинации собственных функций.
Следовательно, возникает существенно новая и важная идея. Она заключается в том, что каждой физической величине необходимо поставить в соответствие некий символ операции, определенный оператор. Для того чтобы, не задумываясь, написать уравнение распространения волны, связанной с частицей, Шредингер заменил компоненты импульса оператором, пропорциональным производным по сопряженным координатам, причем множитель пропорциональности содержал постоянную h.
Естественно также предположить, что каждой координате соответствует умножение на эту координату. Поскольку все механические величины. Характеризующие поведение частицы, можно выразить с помощью координат и компонент импульса (сопряженных импульсов Лагранжа), то только что сформулированные правила позволяют нам найти оператор, соответствующий любой механической характеристике частицы. Если образовать оператор энергии, то получим оператор Гамильтона, с которым мы встречались при построении волнового уравнения. Обобщая этот вывод, приходим к принципу, согласно которому всем физическим величинам сопоставляются операторы. Этот принцип положен в основу новой механики.
Теперь уже можно понять, как Шредингер построил матрицы, которые он хотел отождествить с матрицами квантовой механики. Пусть имеется некоторая механическая величина, характеризующая движение частицы и соответствующий ей оператор, правило построения которого мы знаем. Каждой паре собственных функций рассматриваемой системы можно, таким образом, сопоставить величину, образованную следующим образом. Оператор, о котором идет речь, действует на одну из функций пары, результат множится на комплексно сопряженное значение другой функции и интегрируется по всему пространству.
Повторяя подобную операцию со всеми парами собственных функций, получаем систему элементов, одни из которых относятся к одному стационарному состоянию, другие – к двум стационарным состояниям, т.е. к переходам. Эти элементы располагают в таблицу, причем элементы первого типа помещают на диагонали (диагональные элементы). Каждой механической величине сопоставляется, таким образом, матрица. Вопрос теперь заключается лишь в том, можно ли отождествить эти матрицы и матрицы квантовой механики.
Ответ на этот вопрос утвердительный. Шредингер прежде всего показал, что матрицы, построенные только что описанным способом, должны удовлетворять, как и матрицы Гейзенберга, правилам сложения и перемножения алгебраических матриц. Кроме того, несколько странный путь, которым постоянная Планка проникла в квантовую механику, получил в концепции Шредингера немедленное объяснение. Произведение двух операторов, вообще говоря, не коммутирует: полученный результат зависит от порядка сомножителей.
Тем не менее во многих случаях два оператора, соответствующих механическим величинам, коммутируют. Однако имеется исключение, когда этими величинами являются координата и сопряженная компонента импульса, ибо оператор, отвечающий последнему, пропорционален производной по сопряженной координате, а операция «производная по некоторой переменной» не коммутирует, как легко видеть, с операцией умножение на эту переменную.
Отсюда немедленно следуют сформулированные Гейзенбергом правила перестановки. Чтобы завершить отождествление рассматриваемых матриц, остается лишь показать, что матрицы волновой механики подчиняются каноническим уравнениям квантовой механики. Вот как это было сделано: Шредингер показал, что из канонических уравнений строго следует, что волновые функции, использованные при конструировании матриц, обязательно удовлетворяют волновым уравнениям волновой механики. Короче говоря, канонические уравнения квантовой механики эквивалентны волновым уравнениям волновой механики.
Таким образом, оказалось, что обе формы новой механики сводятся одна к другой. Теперь больше не вызывает удивления тот факт, что они приводят в проблеме квантования к одинаковым результатам. Метод квантовой механики, оперирующий прямо с матрицами и не имеющий дела с промежуточными величинами – волновыми функциями, более компактен и часто быстрее приводит к желаемым результатам. Метод же волновой механики лучше удовлетворяет интуиции физиков и лучше согласуется с образом их мыслей. Поэтому на первый взгляд он кажется более естественным и удобным для работы. Действительно, большинство физиков пользуется волновым методом и при расчетах явно использует волновые функции.
4. Принцип соответствия в новой механике
Новая механика позволяет придать гораздо более точную форму принципу соответствия и частично устранить поводы для критики, которой он подвергался в рамках старой квантовой теории. Мы уже видели, как Бор пытался использовать разложение в ряд Фурье электрического момента, соответствующего в классической модели начальному или конечному состоянию квантового перехода, чтобы предсказать поляризацию и интенсивность излучения при этом переходе. В случае больших квантовых чисел этот метод вполне удовлетворителен и свободен от всяких неопределенностей.
Однако в случае средних и малых квантовых чисел, практически наиболее важном, возникают трудности и двусмысленности. Наоборот, в новой механике сразу получается весьма ясный способ применения принципа соответствия. Действительно, в матрице, отвечающей компоненте электрического момента, каждый переход описывается одним и только одним элементом. Рассматривая матричный элемент, соответствующий определенному переходу, как амплитуду данной компоненты дипольного момента для данного перехода, можно, пользуясь формулой, аналогичной классической формуле, дать необычайно точное и недвусмысленное предсказание характера излучения при данном переходе. Конечно, в этом способе остается недоказанным, насколько законно применять для расчета указанных интенсивностей формулы классического типа. Однако это утверждение – один из наиболее существенных постулатов метода соответствия. Если принять эту гипотезу, то больше не останется никакого произвола и нестрогости в применении принципа соответствия.
В такой строгой форме принцип соответствия был установлен Гейзенбергом при создании матричной механики. На язык волновой механики его «перевел» Шредингер. Эти выдающиеся физики даже предложили одно наглядное объяснение роли матричных элементов в расчете излучения. Электрон в атоме нельзя больше считать локализованным в каждый момент времени. Есть лишь определенная вероятность найти его в той или иной точке, вероятность, пропорциональная согласно принципу интерференции квадрату модуля волновой функции. Это позволяет нам считать электрон как бы размазанным внутри атома, а его электрический заряд – в среднем распределенным непрерывным образом. Согласно Шредингеру, можно было бы применить принцип соответствия, сказав, что все происходит таким образом, как будто электрическая система (изменяющаяся во времени) излучает в соответствии с классическими законами. На первый взгляд такая точка зрения кажется вполне удовлетворительной, ибо она позволяет нам вновь» получить боровский закон частот. Однако, изучив ее внимательнее, мы видим, что на этом пути возникают серьезные трудности, и от него приходится отказаться. В действительности процесс излучения при квантовых переходах является по своей сущности настолько дискретным, что его нельзя строго представить себе как излучение некоторым, пусть фиктивным, распределением электричества, происходящим по классическим законам. Единственная поистине корректная интерпретация роли матричных элементов заключается в том, что согласно идеям, установленным в связи с принципом соответствия, матричные элементы позволяют вычислить вероятность того, что некоторое состояние претерпевает в единицу времени определенный квантовый переход.
Принцип соответствия новой механики позволяет вычислить интенсивность и поляризацию спектральных линий и, что особенно важно, вновь получить правила отбора. 0:1 позволяет также решить огромное число задач, касающихся взаимодействия вещества и излучения, среди которых я укажу лишь на задачу рассеяния света и дисперсии. Теперь можно строго получить формулу Крамерса – Гейзенберга, выведенную ранее с помощью приближенных соображений соответствия.
Применение метода соответствия к изучению взаимодействия вещества и излучения дало вполне удовлетворительные результаты и определенно содержит большую долю истины. Тем не менее нельзя не заметить, что, систематически применяя формулы электродинамики, записанные соответствующим образом, постоянно упускают из виду корпускулярную природу света. Действительно, рассеяние света атомом можно было бы рассматривать как задачу о соударении фотона с атомом, рассмотренную методами волновой механики. Чтобы успешно решить поставленный вопрос с этой точки зрения, необходимо попытаться ввести понятие о фотонах в электромагнитные колебания, иными словами, проквантовать электромагнитное поле.
Ваш комментарий о книге Обратно в раздел Наука
|
|