Библиотека

Теология

Конфессии

Иностранные языки

Другие проекты







Ваш комментарий о книге

Шпенглер О. Закат Европы. Образ и действительность. т.1

ОГЛАВЛЕНИЕ

ГЛАВА ПЕРВАЯ

О СМЫСЛЕ ЧИСЕЛ

1

Необходимо сейчас же установить точный смысл и отчасти новое значение некоторых применяемых на этих страницах основных понятий, метафизическое содержание которых само собой постепенно раскроется в ходе изложения, но точный смысл которых необходимо пояснить с самого начала.
Общепринятое различение бытия и становления, усвоенное также философией, недостаточно точно выражает сущность противоположности, выражаемой этими двумя понятиями. Бесконечное становление - деятельность, "действительность", - примерами чему могут послужить физические понятия равномерной скорости и состояния движения или основные представления кинетической теории газов, приходится принимать также как состояние и, следовательно, относить к бытию. Наоборот, в качестве последних элементов непосредственно данного в сознании и через сознание, мы определенно различаем - вместе с Гёте - становление и ставшее. Даже если сомневаться в возможности подойти к последним основам стихии человеческого путем построения отвлеченных понятий, все же ясное и определенное чувство, из которого возникает эта основная, проникающая до крайних границ человеческого сознания противоположность, представляет собой такое значительное нечто, какое вообще является достижимым.
Отсюда следует с полной необходимостью, - a priori в смысле Канта, - что, в основе всего ставшего лежит становление, а не наоборот.
Далее, словами собственное и чужое я обозначаю два изначальных факта сознания, смысл которых для каждого бодрствующего человека - следовательно, устраняется состояние сновидения - ясен на основании полной внутренней очевидности, хотя и не поддается более точному определению. Чужое имеет постоянно то или иное отношение к тому основному

106

факту, который обозначается словом чувственное (внешний мир, мир впечатлений). Философское творчество великих мыслителей постоянно стремилось возможно точнее определить это взаимоотношение при помощи полу наглядных схематических концепций, как, например, явление и вещь в себе, мир как воля и представление, я и не-я, хотя эти попытки переступают границы возможности точного человеческого познания. В равной мере, в изначальном факте, обозначаемом словом я (внутренняя жизнь, личность) некоторым способом, точная формулировка которого также остается недоступной методам абстрактного мышления, коренится элемент "собственного".
Далее, словами душа и мир я обозначаю то противоположение, наличие которого идентично с самим фактом бодрствующего чистого человеческого сознания. Существуют различные степени ясности и остроты этого противоположения, степени сознательности - духовности - одним словом, жизни, от только что начавшегося разделяться на полюсы мифического брезжущего рассвета первобытного человека и ребенка - сюда относятся становящиеся в позднейшее время все более редкими мгновения религиозного и художественного вдохновения - до крайней остроты бодрствования, как, например, в явлениях кантовского или наполеоновского мышления. Эта элементарная структура сознания в качестве факта непосредственной внутренней очевидности недоступна дальнейшему различению путем понятий и в такой же степени очевидно, что эти два, в известной мере искусственно и только средствами человеческой речи разделяемые, момента постоянно соприсутствуют, соединенные и переплетенные, и являются известным единством, известным целым, причем все предрассудки теории из области теории познания, усвоенные прирожденными идеалистами или реалистами, которые полагают первоосновой - или выражаясь их словами "причиной" - то душу, то тело, не имеют никакого основания в чистом факте сознания. Подчеркивается ли в известной философской системе та или иная сторона, это характерно только для личности философа и имеет исключительно биографическое значение.
Если применить слова становление и ставшее к полярной
структуре сознания, то слово жизнь получит вполне определенный, близкий по своему значению к понятию становления, смысл. Можно становление и ставшее определить как факт и предмет жизни. Собственная, идущая вперед, постоянно совершающаяся жизнь в каждом своем мгновении

107

идентична с бодрствующим сознанием * - этот факт называется настоящим - и, как всему становящемуся, обоим им свойствен таинственный признак направления, некоторое невыразимое чувствование (жизнечувствование), которое человек стремится умственно подчинить своей власти при помощи свойственного всем высшим языкам слова время и связанных с ним проблем, пытаясь таким образом - но тщетно - его объяснить. Из этого вытекает глубокая связь ставшего (неподвижного) со смертью.
Если - давая притом перевес бессознательному над сознательным - обозначить душу как возможность, и, наоборот, мир как действительность - выражения, относительно которых внутреннее чувство не оставляет никакого сомнения, - то жизнь явится тем образом, в котором совершается осуществление возможного. На основании признака направления возможное называется будущим, осуществленное - прошедшим. Само же осуществление, сосредоточие и смысл жизни мы называем настоящим. "Душа" - это то, что подлежит осуществлению, "мир" - осуществленное, "жизнь" - осуществление. На основании этого такие выражения, как мгновение, продолжительность, развитие, жизненное содержание, жизненная задача, значение, объем, цель, конец, полнота и пустота жизни, получают определенное, для всего последующего, именно для понимания исторических явлений, существенное значение.
Наконец, как уже выше говорилось, слова история и при рода будут употребляться в определенном, до сих пор необычном смысле. Они обозначают возможные способы понимания всего осознанного становления и ставшего, жизни и пережитого в форме единообразного, одухотворенной, благоустроенной картины мира (космоса, вселенной, всего сущего), в зависимости от того, что играет роль главенствующего и устрояющего общее впечатление принципа: становление или ставшее, направление или протяженность ("время" или "пространство"). Речь идет не об альтернативе, но о шкале бесконечно многих и очень разнообразных возможностей обладать внешним миром в качестве отражения и свидетельства собственного существования, о шкале, крайними ступенями которой являются чисто органическое и чисто механическое мировоззрения (в собственном значении слова: воззрение на мир). Первобытный человек (согласно нашему представлению о его сознании) и ребенок (согласно нашим воспоминаниям)

* Периодические перерывы во время сна здесь не принимаются во внимание.

108

не обладают еще ни одной из этих возможностей в достаточно ясном и согласованном виде. Необходимым условием такого высшего миросознания следует признать наличие языка, но не вообще какого-либо человеческого языка, а языки культурного, каковой для первого еще не существует, а для второго хотя и существует, но недоступен. Или, говоря другими словами, у обоих нет еще отчетливого мышления о мире: имеется предчувствие, но никакого действительного познания истории и природы, во взаимоотношение которых укладывалось бы их собственное существование: у них нет культуры.
Таким образом, это важное слово получает определенный
и в высшей степени значительный смысл, который положен в
основу всего последующего изложения. В связи с вышеупомянутым определением души как возможного и мира как действительного я различаю возможную и действительную культуру, т.е. культуру, как идею - общего или личного - существования, и культуру как тело этой идеи, как сумму сделавшихся доступными восприятию пространственных и ощутимых ее выражений, как-то: поступки и настроения, религия и государство, искусство и науки, народы и города, экономические и общественные формы, языки, право, обычаи, характеры, черты лица и одежды. История, находящаяся так же, как и жизнь, в близком родстве со становлением, есть осуществление возможной культуры.
Следует прибавить, что все эти положения лежат в значительной своей части вне пределов доступного истолкованию путем понятий, определений и доказательств и что глубочайший их смысл должен быть раскрыт, главным образом, путем прочувствования, переживания, созерцания. Между переживанием и познаванием как формами отношений собственного и чужого ("субъекта и объекта") существует различие, недостаточно оцененное. Оно обнаруживается в различии между непосредственной достоверностью, примерами чему служат разные виды интуиции (озарение, чутье, художественное прозрение, Гётевская точная чувственная фантазия), и результатами рассудочного опыта и экспериментальной техники. В первом случае средствами сообщения служат сравнение, образ, символ, во втором - формула, закон, схема. Ставшее делается достоянием познания, или, вернее, как мы дальше увидим, результат становления идентичен для человеческого духа с актом познания. Становление может быть только переживаемо и прочувствовано путем глубокого бессловесного понимания. На этом основано так называемое знание людей. Понимать историю - значит быть знатоком человеческого сердца в высшем смысле слова. Чем чище исторический образ

109

раз, тем исключительнее доступен он только этому собствен-
но неземному видению, не имеющему ничего общего со средствами познания, которые исследует "Критика чистого разума". Механизм чистой картины природы, например вселенная Ньютона или Канта, подвергается познанию, определению путем понятий, разложению путем законов и уравнений и, наконец, приводится в систему. Организм чистого исторического образа, каковым был мир Плотина, мир Данте и Бруно, является объектом созерцания, внутреннего переживания, восприятия в образах и символах, наконец, воссоздается в поэтических и художественных концепциях. Гётева "живая природа" есть исторический образ мира.
Переживание и познавание суть акты сознания отдельного
человека. Их результат, ставший, таким образом, актом прошлого, памяти, знания, называется: нечто пережитое или некоторое познание. Понять что-нибудь - исторически или в области естествознания - значит гармонически включить в имеющийся уже запас пережитого или познанного.

2

В качестве примера того, как душа стремится осуществить
себя в образе своего окружающего мира, того, следовательно,
насколько ставшая культура является выражением и отражением идеи человеческого существования, я беру число, лежащее в качестве непосредственного данного элемента в основе всякой математики. Я делаю это в особенности на том основании, что всякая математика, доступная во всей своей глубине только очень немногим, занимает совершенно исключительное положение между остальными созданиями человеческого духа. Она является наукой строгого стиля, так же как и логика, но только более всеобъемлющей и с более богатым содержанием; в отношении необходимости направляющего вдохновения и больших конвенционных форм в ее развитии, она является, наряду с пластикой и музыкой, настоящим искусством; наконец, она является метафизикой высшего порядка, как это доказывают Платон и в особенности Лейбниц. До настоящего времени всякая философия возрастала в связи с соответствующей математикой. Число - это принявшая образ идея причинной необходимости, подобно тому, как представление о Боге, создаваемое заново каждой культурой из своих глубин, является принявшей образ идеей о необходимости судьбы. В этом смысле существование чисел можно именовать тайной, и религиозное мышление всех культур испытывало на себе их влияние.

110

Подобно тому, как всякое становление имеет в себе первоначальный признак направления (необратимости), в равной мере все ставшее несет в себе признак протяженности, причем возможно только искусственное разделение значения этих терминов. Вместе с тем подлинная тайна всего ставшего и, следовательно (пространственно-материально), протяженного, воплощается в духовной стороне всякой культуры в виде типа математического (неподвижного) числа, в противоположность хронологическому. В основе его сущности лежит стремление к механическому разграничению. Число родственно слову в том смысле, что подобно последнему - в роли понятия "охватывая", "обозначая" - оно разграничивает мировпечатления. Конечно, глубочайшая сущность тут недоступна познанию и выражению. Сделавшееся вещью, настоящее число, точно представленный, произнесенный, написанный числовой знак - цифра, формула, знак, фигура - единственно подлежащее математическому толкованию, подобно возникшему в уме, произнесенному, написанному слову, является в этом смысле оптическим символом, осязаемым и сообщаемым, отражающим в себе разграничивающую деятельность. Возникновение чисел подобно возникновению мифа. Римлянин возводил в божество неопределимые впечатления природы ("чужое"), numina, стараясь при помощи имени отграничить и заклясть их. Точно так же и числа и слова суть получившее образ и при помощи формы подчиненное мирочувствование. При их помощи дух ("собственное") достигает власти. При их помощи он приводит в порядок и разделяет на части мир. Все настоящие акты познания - не акты переживания, - будучи в качестве таковых связанными с наличностью какого-нибудь культурного языка, стремятся к одинаковой цели. Определение, суждение, закон, система являются результатами произведенных разграничений , и установление причинной связи, которой исчерпывается сущность всякого естествознания, сводится исключительно к точному отграничению двух впечатлений, которые по отношению к числу носят название причины и действия, по отношению к слову - основания и следствия. На этом основано внутреннее сходство построения высокоразвитого языка (грамматики, строения фраз) с соответствующей математикой. Логика всегда есть один из видов математики и обратно. Вместе с тем, во всех актах сознания, находящихся в связи с математическим числом - как-то: измерение, счисление, начертание, взвешивание, приведение в систему, разделение - заложено общее стремление к разграничению ставшего и протяженного, и только благодаря почти что бессознательным актам подобного

111

рода существуют для бодрствующего человека объективные
предметы, свойства, отношения, отдельные явления, единство
и множество, короче говоря, вся воспринятая, в качестве необходимой и непоколебимой, структура той картины мира, которую он называет "природой" и как таковую "познает". Природа - это то, что счислимо. История есть совокупность всего того, что не имеет отношения к математике. Отсюда математическая точность естественных законов, удивительное прозрение Галилея, что природа "scritta in lingua matematica", и выдвинутое Кантом положение, что точное естествознание простирается как раз до тех границ, в пределах которых возможно применение математического метода.
Следовательно, в числе, как 6 знаке законченного экстенсивного ограничения, заложена сущность всего действительного, всего, что стало, познано и разграничено в одно и то же время; это на основании внутренней очевидности понял Пифагор при помощи величественной, исключительно религиозной интуиции. Вместе с тем не следует смешивать математику, понимаемую как обладание прирожденным виртуальным миром чисел, с гораздо более узкой научной математикой, с учением о числах. Одна - исчерпывающее и необходимое качество сознания, другая - возможный способ развить это качество. Писанная математика, т.е. известная система застывших положений, в такой же малой мере, как и изложенная в теоретических сочинениях философия, выражают собой все наличие тех математических и философских возможностей, которые таятся в недрах известной культуры. Имеются, кроме того, совершенно иные пути выразить лежащее в основе чисел исконное чувствование и подчинить образующему принципу ставшее и протяженное, - материю или пространство. В начале каждой культуры существует архаический стиль, которому не только применительно к раннеэллинскому искусству, но и вообще можно дать название геометрического. Есть что-то общее, определенно математическое в дипилоновом стиле греческих погребальных ваз, в храмовом стиле IV египетской династии, характеризуемом неограниченным господством прямой линии и прямого угла, в иератическом стиле древнехристианских саркофаговых рельефов и в романском орнаменте. Каждая линия, каждая человеческая или звериная фигура совершенным отсутствием стремления подражать вскрывают здесь мистическое числовое мышление, непосредственно связанное с тайной и культом смерти (застывшего).
Готические соборы и дорические храмы - это окаменевшая математика. Конечно, Пифагору принадлежит научное

112

толкование античного числа как принципа мироустроения осязаемых вещей, как меры или величины. Но в то же время число получило свое выражение в качестве принципа прекрасного устроения чувственно-телесных единиц также в строгом каноне эллинских статуй, дорических и ионических
ордеров колонн. Все большие роды искусства представляют собой столько же различных способов подчиненного числу многозначительного различения. Следует только вспомнить о
проблеме пространства в живописи. Высокое математическое дарование может и без всякой науки стать продуктивным и
вполне себя осознать. Имея перед глазами величественное понимание числа, без которого немыслимы трактовка пространства в пирамидном храме, строительная, оросительная и административная техника, существовавшие уже в Древнем египетском Царстве за 2800 лет до Р.Х., не говоря уже о египетском календаре, мы, конечно, не станем утверждать, что лишенная всякого значения "Счетная книга Яхмоса" из эпохи Нового Царства, является показателем уровня египетской математики. Туземцы Австралии, духовное развитие которых находится еще вполне на ступени первобытного человека, обладают математическим инстинктом, или, что то же, еще не осознанным при помощи слов и знаков сокровищем чисел, далеко превосходящим греческий в отношении толкования чистого пространства. Они изобрели оружие, бумеранг, действие которого указывает на инстинктивное знакомство с родами чисел, которое мы склонны бы были отнести к области высшего геометрического анализа. Соответственно этому, как это будет выяснено впоследствии, они обладают очень сложным церемониалом и таким тонким словесным различением различных степеней родства, какое мы не встречаем нигде, даже ни в одной высокой культуре. Этому отвечает то обстоятельство из цветущей эпохи греков времен Перикла, что они, в аналогии с эвклидовой математикой, не имели никакой склонности ни к церемониалу в общественной жизни, ни к одиночеству, в полной противоположности к эпохе барокко, где мы наблюдаем наряду с анализом пространства двор Короля-Солнца и систему государств, основанную на династическом родстве.
Действительно, стиль души проявляется в мире чисел, однако не только в научной обработке последнего.

3

Отсюда вытекает решающее обстоятельство, остававшееся
до сего времени неизвестным даже самим математикам.

113

Число в себе не существует и не может существовать.
Существует несколько миров чисел, потому что существует
несколько культур. Мы встречаем индийский, арабский, античный, западноевропейский числовой тип, каждый по своей сущности совершенно своеобразный и единственный, каждый являющийся выражением совершенно особого мирочувствования, символом отграниченной значимости, также и в научном отношении принципом распорядка ставшего, в котором отражается глубокая сущность именно этой, и никакой другой души, той, которая является центральным пунктом как раз соответствующей, и никакой другой культуры. Таким образом существует несколько математик. Несомненно, архитектоническая система эвклидовой геометрии совершенно отличается от картезианской, анализ Архимеда нечто совершенно иное, чем анализ Гаусса, не только по языку форм, целям и приемам, но по своей сути, по первоначальному феномену числа, научное развитие которого они собой представляют. Это в духе и духом воспринятое число, это переживание предельности, с внутренней необходимостью получившее через число наглядность и принявшее форму, а вместе с тем вся природа, весь пространственный мир, образ которого возник через это самопроизвольное отграничение и трактование которого доступно каждый раз только математике определенного рода, - все это говорит не о человеческой стихии вообще, но каждый раз о вполне определенной.
Стиль каждой возникающей математики зависит, следовательно, от того, в какой культуре она коренится и какие люди о ней размышляют. Потому что число предшествует рассудочному уму, а не наоборот. Числа суть творческие, а не творимые сущности. Ум может привести к научному раскрытию формальных возможностей, может применять их и достигать высочайшей зрелости в их применении; но изменить их он совершенно не в силах. В ранних формах орнаментики и архитектуры, в дорической колонне и готике соборов уже осуществлена идея эвклидовой геометрии и счисления бесконечно малых, еще за целые столетия до того, как родились первые математики соответствующих культур.
Глубокое внутреннее переживание, настоящее пробуждение собственного я, делающее ребенка высшим человеком, членом той культуры, к которой он принадлежит, отмечает начало числового и словесного понимания. Только с этого момента начинается сознание предметов, как чего-то во всех отношениях ограниченного и легко отличаемого, возникают точно определимые свойства, понятия, причинная необходимость, система окружающего мира, форма вселенной, законы

114

вселенной - "закон" по своей природе всегда ограничен,
неподвижен, подчинен числам, - и вдруг родится ощущение
того, что собственно означают числа, в формах ли пластического искусств или математического знания. Понятно, что они еще закрыты для первобытного человека и для ребенка и что - говоря биографически или исторически - решительная эпоха наступает только в тот момент, когда осознанный в его значении акт счисления, измерения, рисования и формирования породит совершенно новый мир, возникший из вновь вскрытой внутренней жизни. Это переживание, с проявлением которого возникает большой стиль, выделяет культуры и типы души как особые индивидуумы из примитивной человеческой стихии.
Как известно, Кант разделяет все наличие человеческого
знания на априорные (необходимые и имеющие общее значение) и на апостериорные (вытекающие из опыта) синтезы, и относит математическое познание к первым. Этим он, несомненно, дал отвлеченное выражение сильному внутреннему ощущению. Однако совершенно независимо от того, что между этими двумя областями не существует вполне определенной границы (чему слишком много примеров мы находим в современной высшей математике и механике), каковая определенность, однако, казалось бы, безусловно требуется самим происхождением принципа, сама априорность, одна из гениальнейших концентраций всей теории познания, является понятием в высшей степени трудным. Ничуть не утруждая себя доказательствами - каковые и сами по себе невозможны, - Кант делает предпосылку о неизменяемости формы всякой умственной деятельности и о ее идентичности для всех людей. Таким образом, одно обстоятельство, значение которого не может быть оценено слишком высоко, было им совершенно устранено из рассмотрения, главным образом вследствие того, что Кант при проверке своих мыслей считался только с умственным материалом и интеллектуальным обликом своего времени. Речь идет об изменяющейся степени обязательности этого "абсолютного принципа". Наряду с некоторыми факторами несомненно широкого значения, которые, по крайней мере по видимости, не зависят от принадлежности познающего к той или иной культуре или столетию, в основе всякого мышления лежит еще иная необходимость формы, которой человек подчинен как член вполне определенной, и только этой культуры. Это два совершенно различных вида априорного содержания, и нельзя дать никакого ответа, так как раз - решение лежит вне возможности познания, на вопрос, где граница между двумя вышеупомянутыми областями и существует

115

ли она вообще. До сих пор никто не решился признать, что считавшееся само собой понятным постоянство духовных форм есть только иллюзия и что в течение известной нам истории стиль познания изменялся несколько раз. Но здесь следует помнить, что consensus omnium не всегда свидетельствует об общей истине, но иной раз и об общей ошибке. Смутное сомнение, однако, всегда существовало, и уже из самого факта наличия разногласий всех мыслителей можно было сделать правильный вывод. Но открытием является установление того факта, что это разногласие проистекает не из несовершенства человеческого духа, не из того, что окончательное познание "еще не" достигнуто, что это не недостаток, а есть положенная судьбой историческая необходимость. Глубочайшее и последнее может быть открыто не из постоянства, а из различия и из органической периодичности этого различия. Сравнительная морфология форм познания - вот задача, подлежащая разрешению западных мыслителей.
4

Будь математика просто наукой, подобно астрономии и
минералогии, ее предмет было бы легко определить. Но по
отношению к ней никто не может и не мог этого сделать. Если мы, западноевропейцы, насильственно распространяем наши числовые понятия на то, что занимало математиков в Афинах или Багдаде, все же остается несомненным, что тема, цель и методы науки, носящей то же название, были там совсем иными. Не существует одной науки математики, есть многие математики. То, что мы называем историей математики, понимая под этим прогрессирующую проверку единственного и неизменного идеала, является в действительности, если только устранить обманчивую картину внешних явлений истории, множественностью законченных в себе, независимых процессов, постоянным нарождением новых, усвоением, переработкой и устранением чуждых миров форм, чисто органическими, ограниченными известной длительностью расцветом, зрелостью, увяданием и смертью. Не следует впадать в ошибку. Аисторический греческий дух создал свою математику из ничего, исторически настроенный дух Запада, обладавший уже заимствованной античной наукой, - усвоенной внешне, а не внутренне, - принужден был приобретать собственным путем кажущихся изменений и усовершенствований, в действительности же путем разрушения неадекватной ему эвклидовской. Одно было сделано Пифагором, другое Декартом. Оба акта в глубине идентичны.

116

Равным образом не подлежит сомнению сродство языка
форм математики и языка форм соседних больших искусств.
Целью всей математики является законченная в себе система
положений, являющая собой синтетический априорный распорядок всего неподвижного, протяженного, т.е. то же непрерывное искание синтеза, которое мы встречаем в проблеме формы каждого изобразительного искусства, в борьбе каждого отдельного художника в своей области за техническое мастерство. Чувство формы скульптора, художника и композитора по существу является математическим. В аналитической и начертательной геометрии XVII века вскрывается тот же распорядок, который вызывает к жизни, охватывает и стремится насквозь проникнуть в современную ей инструментальную музыку (фугированного стиля) и родственную ей масляную живопись, первую при помощи правил контрапункта, этой геометрии звукового пространства, вторую при помощи известной одному только Западу перспективы, этой почувствованной геометрии пространства картины. Это есть то, что Гёте называет идеей, образ которой непосредственно созерцается в чувственном, в то время как собственно наука не созерцает, но только наблюдает и разлагает. Но математика ведет дальше, чем наблюдение и разложение. В минуты возвышения она действует интуитивно, а не путем абстрагирования. Гёте принадлежит глубокое слово, что математик постольку является совершенным, поскольку он ощущает в себе красоту истины. Здесь мы чувствуем, как близка тайна феномена чисел тайне художественной формы, которая также имеет своей целью многозначительное отграничение, прекрасную меру, уравновешенное величие, строгие взаимоотношения, гармонию, короче говоря, совершенный распорядок чувственного. Таким образом, прирожденный математик становится в один ряд с великими мастерами фуги, резца и кисти, которые также стремятся одеть в символы, осуществить и сообщить другим тот великий распорядок всех вещей, который рядовой современник их культуры носит в себе, не умея в действительности им овладеть. Таким образом царство чисел становится интуитивным отображением мировой формы, наряду с царством звуков, линий и красок. Поэтому слово "творческое" в приложении к математике имеет большее значение, чем в приложении к собственным наукам. Ньютон, Гаусс, Риман были художественными натурами. Стоит только вспомнить как внезапно их осеняли их великие концепции. "Математик, - говорит старик Вейерштрас, - в котором вместе с тем нет частицы поэта, не может быть совершенным математиком".

117

Итак, математика - тоже искусство. У нее есть свои стили и периоды стилей. В противоположность мнению непосвященного или философа, поскольку последний судит как непосвященный, она по своей сущности не неизменна, но, как и всякое искусство, подвержена от эпохи к эпохе незаметным изменениям. Следовало бы при изображении развития больших искусств постоянно иметь в виду современную математику, что оказалось бы далеко не бесплодным. Подробности глубоких взаимоотношений между направлениями в теории музыки, начиная с Орландо Лассо, и фазами развития теории функции никогда не были предметом исследования, однако эстетика могла бы почерпнуть отсюда гораздо больше поучи тельного, чем из всякой "психологии". Все великие математики, начиная с Ферма, Паскаля и Декарта (1630 г.), быт трансцендентальными аналитиками, все же древние, начиная с Пифагора (540 г.) - зрительно-телесно мыслящими натурами. Нужно ли еще раз указывать на тесную связь этих дарований с начинающимся расцветом чистой инструментальной музыки в первом случае, и ионической мраморной скульптуры - во втором? Античная математика, вначале почта исключительно планиметрическая, в своем развитии от Пифагора до Архимеда, обнаруживает тенденцию к стереометрическому пониманию всего числимого. Этому соответствует тенденция плоской живописи аттическо-коринфского стиля к полной пластике через промежуточную стадию рельефа, наложенного на плоскость. Статуя возникла частью из фигурно-рельефообразно-обделанной колонны (Гера Херамия), частью из деревянных или бронзовых пластинок, служивших отделкой стены (Артемида Никандры). И дерево и порос обрабатывались при помощи резца, однако только ваяние из мрамора при помощи долота вполне отвечало художественному чувству создания тела. Соответствующий процесс наблюдается и на Западе. В то время, как так называемая геометрия превращается в анализ чистого пространства, из которого шаг за шагом устраняется все оптическое - как далеко, например, понятие координат у Декарта ушло вперед по сравнению с Ферма - одновременно и инструментальная музыка приобретает новые средства выражения. С 1520 г. изобретенная в Верхней Италии скрипка начинает заменять лютню. Фагот делается известным с 1525 г. В Германии в течение XVI и XVII столетий орган развился в покоряющий пространство инструмент. Монтеверди (1567-1643), положивший изобретением доминантсепт-аккорда начало собственной хроматики, имел в своем распоряжении первый настоящий оркестр, а в 1630 г. в лице Фрескобальди появляется

118

первый большой виртуоз на органе. Рядом с analysis situs, этим венцом творчества Лейбница, стоит мощная символика пространства последних созданий Рембрандта, умершего в 1669 г., а именно: автопортрета в Мюнхене, Дармштадтского Христа и Евангелиста Матфея.
Еще одно обстоятельство, несомненно, отличает стремление к форме всякой математики от чисто научных целей любой физики и химии и сближает ее с изобразительными искусствами: элементы ее, а именно неподвижные числа, независимо от того, имеют ли они наглядный или трансцендентальный характер, являются не какой-либо эмпирической действительностью, а чистыми формами протяженного, как орнаментальные линии или музыкальные гармонии, а приемы ее, следовательно, говоря словами Канта, синтетичны, или, говоря художественным языком, представляют собой композицию, в каковой художник подчинен высшей необходимости - априорному Канта. Пусть в популярных частях любой математики это менее заметно; но числовые образования высшего порядка, к которым каждая из них восходит своими отличными путями, как-то: индийская децимальная система, античные группы конусных сечений, простых чисел и правильных полиэдров, на Западе - числовые тела, пространства многих измерений, в высшей степени трансцендентальные образования учений о трансформации и о множествах, группа неэвклидовских геометрий - все они уже не имеют исключительно рассудочного происхождения, и для полного понимания их глубоких, вполне метафизических оснований необходим известный род визионерного ясновидения. Здесь дело
сводится к внутреннему переживанию, а не только к познанию. Только с этого пункта начинается большая символика чисел. Эти формы, родившиеся во имя определенной культуры в душе великих мастеров, как выражение глубочайших тайн ее мироощущения открывают посвященному как бы первооснову его существования. Нужно, чтобы эти создания действовали на нашу душу, как внутренность соборов, как стихи ангелов из пролога "Фауста" или кантаты Баха, для чего необходимы счастливые и редкие минуты. Только тот, кто способен на это - а зрелые умы всегда будут редки - поймет, почему Платон называл вечные идеи своего космоса числами .
5

Когда в пифагорейских кругах около 540 г. пришли к убеждению, что сущность всех вещей заключается в числах, тогда не только был сделан шаг вперед в развитии

119

математики, но родилась новая математика из глубин антично)
духовной стихии, и возникла сознательная теория, задолго
предвозвещенная в метафизических проблемах и поисках художественной формы. Это была совершенно новая математика наряду с навсегда оставшейся не написанной математиком египетской культуры и алгебраически-астрономически по строенной математикой вавилонской культуры с ее эклиптическими системами координат, математиками, однажды родившимися в великую минуту истории и в то время давно уже умершими. Пришедшая в дряхлость ко времени римлян античная математика умерла для живой жизни, несмотря на сохранившуюся в нашем способе выражаться до настоящей: времени видимость существования, чтобы много позднее и к иной далекой местности уступить место арабской; после тоге как и эта отжила свое время, через долгий промежуток времени, на смену ей явилось совершенно новое порождение новой почвы, наша математика, которую мы в странном ослеплении считаем математикой вообще, вершиной и целью двухтысячелетнего развития, но жизнь которой, строго ограниченная назначенными ей столетиями, также близится к своему окончанию.
Изречение, гласящее, что число составляет сущность всех
чувственно осязаемых вещей, осталось наиболее ценным положением античной математики. Оно определяет число как меру. В нем заключено все мироощущение души, страстно обращенной к настоящему и здешнему- Измерять в этом смысле - значит измерять что-либо близкое и телесное. Представим себе квинтэссенцию античного искусства, свободно стоящую статую нагого человека: в ней, при помощи плоскостей, меры и чувственного соотношения частей, исчерпывающе передано все существенное и значительное бытия, весь его этос. Пифагоровское понятие гармонии чисел, хотя, вероятно, и ведущее свое начало от - одноголосной - музыки, представляется как бы нарочно приспособленным к идеалу этой пластики. Обделанный камень лишь постольку и являет собой нечто, поскольку у него есть уравновешенные границы и измеренные формы, поскольку он получил осуществление под резцом художника. Без этого он только хаос, нечто еще не осуществленное, покамест еще ничто. Это ощущение, перенесенное в более обширные области, порождает в качестве противоположности хаосу космос, внешний мир античной души, гармонический распорядок всех заключенных в соответствующие границы осязаемо-наличных отдельных предметов. Сумма таких предметов и есть вселенная. Промежуток между ними, наше преисполненное всем пафосом высокого символа

120

мировое пространство есть ничто, ?? ?? ??. Протяженность для античных людей значит телесность, для нас - пространство, в котором отдельные предметы "являются" функцией. Обратив наш взгляд отсюда назад, мы, может, разгадаем глубочайшее понятие античной метафизики, а именно ’??????? Анаксимандра, слово, непереводимое ни на один из языков Запада; это то, что не имеет никакого числа в пифагорейском смысле, никаких измеряемых границ и величины, следовательно, не есть существо, а нечто безмерное и лишенное формы, статуя, еще не изваянная из куска камня. Это ???? , нечто лишенное оптических границ и формы, из которого только путем образования границ, разделения на чувственно самостоятельные предметы, возникает что-то, а именно мир. Таким образом, в основе античного познания в качестве априорной формы лежит телесность в себе, чему в Кантовой картине мира точно соответствует абсолютное пространство, исходя из которого Кант, по собственному признанию, мог "мысленно вывести все вещи".
Теперь становится понятным, в чем отличие одной математики от другой, в особенности античной от современной. Согласно всему своему мирочувствованию зрелое античное мышление могло видеть в математике только ученье о соотношении величин, мер и форм физических тел. Когда, руководствуясь этим ощущением, Пифагор изрек свою основную формулу, для него число было именно оптическим символом, не формой вообще или абстрактным отношением, но разграничивающим признаком ставшего, поскольку последнее проявляется в чувственно обозримых подробностях. Вся античность без исключения воспринимает числа как единицы меры, как величины, длины и поверхности. Другой род протяженности недоступен ее представлению. Вся античная математика в основе своей есть стереометрия. Эвклид, живший в III веке и приведший всю систему к завершению, говоря о треугольнике, с внутреннею необходимостью представляет себе поверхность, ограничивающую тело, но никогда не систему трех пересекающихся прямых линий или группу трех точек в пространстве трех измерений. Линию он определяет названием "длина без ширины" ?????’??????? . При нашем способе выражаться это определение показалось бы убогим. В границах античной математики оно превосходно.
И наше западное число, в противность мнению Канта и
даже Гельмгольца, не развилось из "априорной формы созерцания времени", но в качестве распорядка однообразных величин представляет собой нечто специфически пространственное. Время, как это станет понятным на основании

121

дальнейшего, не имеет ничего общего с математическими предметами. Числа принадлежат исключительно сфере протяженного. Но имеется столько же возможностей и, следовательно необходимостей систематически изобразить протяженность сколько имеется культур. Античное число не есть мышление о пространственных отношениях, но мышление об отграниченных для телесного глаза, осязаемых единицах. Поэтому античность - это вытекает с полной необходимостью - знает только естественные (положительные, целые) числа, которые среди многих в высшей степени абстрактных родов чисел западной математики, как-то: комплексных, гиперкомплексных, неархимедовских и иных систем, занимают обычное, ничем не выделяющееся положение.
Поэтому представление об иррациональных числах, или,
по нашему начертанию, о бесконечных десятичных дробях,
осталось для греческого духа совершенно недоступным. Эвклид говорит - и следовало бы точнее принимать смысл его слов, - что несоизмеримые расстояния относятся между собой "не как числа". Действительно, в законченном понятии иррациональных чисел лежит полное отделение понятия числа от понятия величины, причина этому та, что иррациональное число, например л , никогда не может быть отграничено или точно выражено при помощи известного расстояния. Из этого следует, что, например, в представлении об отношении стороны квадрата к его диагонали, античное число, представляющее собой, собственно, чувственную границу, замкнутую величину, и ничто иное, соприкасается с совершенно иной числовой идеей, в самой своей сути чуждой античному
мирочувствованию и поэтому жуткой, как будто бы речь идет
о том, чтобы открыть опасную тайну собственного существования. На это указывает позднегреческий миф, согласно которому тот, кто впервые извлек рассмотрение иррационального из сокровенности и предал его гласности, погиб при кораблекрушении, "так как невысказываемое и безобразное должно постоянно оставаться сокровенным". Кто поймет страх, лежащий в основе этого мифа - тот же страх, который постоянно удерживал греков зрелого времени от расширения их крохотных городов-государств в политически организованные страны, от устройства широких проспектов и аллей с далеким видом и рассчитанным завершением, от вавилонской астрономии с ее устремлением в бесконечные звездные пространства, от преодоления границ Средиземного моря и исследования путей, давно открытых кораблями египтян и финикиян, эту глубокую метафизическую боязнь перед преодолением осязательно-чувственного и настоящего, при помощи которого

122

античное существование окружило себя как бы защитной стеной, за пределами которой лежало что-то жуткое, бездна и первоисточник в известной мере искусственно созданного и утвержденного космоса, - кто поймет это чувство, тому станет понятным основная сущность античного числа, являвшего собой меру в противоположность неизмеримому, а также глубокий религиозный этос, выражающийся в этом ограничении. Гёте в качестве художника с большой страстностью усвоил себе, по крайней мере в своих естественно-исторических исследованиях, эту точку зрения; отсюда его, можно сказать, исполненная страхом полемика против математики, инстинктивно направленная главным образом, чего еще никто как следует не понял, против всей неантичной математики и лежавшего в основе современного ему естествознания счисления
бесконечно малых.
Античная религиозность с возрастающей определенностью
сосредоточивается на чувственно непосредственных - связанных с местом - культах, вполне отражающих это наделенное образом, всегда близкое, божество. Абстрактные, в бесприютных пространствах мышления витающие догматы всегда оставались ей чуждыми. Культ и догмат относятся друг к другу, как статуя к органу в соборе. В Эвклидовой математике, несомненно, остается что-то культовое. Достаточно припомнить учение о правильных многогранниках и их значение для эзотерики платоновской школы. Этому соответствует, с другой стороны, глубокое сродство анализа бесконечности начиная с Декарта с современной ему догматикой, устремляющейся к чистому, освобожденному от всяких чувственных отношений деизму. Вольтер, Лагранж и д'Аламбер современники. Из недр античного духа принцип иррационального, т.е. разрушение статуарного ряда целых чисел, этих представителей совершенного в себе миропорядка, воспринимали как некоего рода святотатство против божества. У Платона в "Тимее" это чувство выступает с полной очевидностью. Действительно, с превращением прерывающегося числового ряда в непрерывный, оказывается под вопросом не только античное понятие числа, но и весь античный мир. Становится понятным, что для античной математики совершенно невозможны легко укладывающиеся в наше представление отрицательные числа, не говоря уже о нуле как числе - обладающем для индийской души, впервые создавшей это понятие, вполне определенным метафизическим привкусом. Отрицательные величины не существуют. Выражение: -2? -3 =+6 не является ни наглядным, ни представлением величины. На +1 кончается ряд величин. В графическом

123

изображении отрицательных чисел (+3--,+2--,+1--,0--,-1--,-2--,-3,),
начиная с нуля расстояния вдруг становятся положительными символами чего-то отрицательного. Они обозначают
что-то, но уже не существуют реально. Отрицательные числа не величины, но что-то такое, на что величины только намекают. Осуществление этого акта отклоняется от линий направления античного числового мышления.
Все родившееся из античного духа становится действительностью только путем пластического отграничения. То, что нельзя нарисовать, - не "число". Платон, Архит и Эвдокс говорят о плоскостных и телесных числах, имея в виду нашу вторую или третью степень, и, само собой разумеется, что понятие высших целых степеней для них не существует. Четвертая степень для являющегося по существу своему пластическим чувства, которое тотчас же истолкует ее как протяженность в четырех измерениях, становится бессмыслицей. Постоянно встречающееся в наших формулах выражение е-ix, или даже применявшиеся уже в XIV столетие Оресмом обозначение 51/2 показалось бы античному чувству полным абсурдом. Эвклид называет множители произведения сторонами (???????). В древности оперируют с дробями - конечными само собою разумеется - прибегая к исследованию отношения двух отрезков прямой линии, выражающихся в целых числах. Именно поэтому идея числа нуль тут совершенно не может проявиться, так как графически она бессмысленна. Пусть не возражают, исходя из привычного способа мышления, что это только "первоначальная ступень" в развитии математики. Внутри того мира, который античность создала вокруг себя, античная математика есть нечто законченное. Незаконченной она представляется только нам. Вавилонская и индийская математики давно уже усвоили в качестве существенных элементов своего мира чисел многое из того, что с
точки зрения античного числового чувства являлось бы бессмысленным, и многие греческие мыслители знали об этом. Единая математика, повторяем это еще раз, есть иллюзия. Действительно только то, что адекватно ей, символически значительно для собственной душевной жизни. Только это представляется логически необходимым, все остальное невозможным, ошибочным, бессмысленным, или, как мы привыкли, руководясь гордостью исторического ума, называть "примитивным". Современная математика, одно из высших достижений западного духа - и во всяком случае "истинная" только для нас - показалась бы Платону смешным и бесплодным заблуждением и уклонением на пути к достижению "истинной", конечно, в античном смысле математики, и

124

трудно себе даже представить, сколько великих концепций чуждых культур погибло по нашей вине, так как мы, исходя из нашего способа мышления и заключенные в его границы, не могли их усвоить или, что то же, считали их ложными, излишними и бессмысленными.
6

В качестве ученья о наглядных величинах античная математика ставит себе целью исключительно истолкование наличных фактов и ограничивает, следовательно, свое исследование и пределы применимости предметами близлежащими и малыми. В противоположность этой последовательности, в практических приемах западной математики вскрывается нечто в высшей степени нелогическое; это обстоятельство, однако, стало известным только после открытия неэвклидовых геометрий. Числа суть чистые формы познающего духа. Их точная применимость к реально созерцаемому является, следовательно, самостоятельной проблемой. Совпадение математических систем с эмпирикой далеко не есть нечто само собой понятное. В противоположность предрассудку непосвященных (встречающемуся также у Шопенгауэра) о непосредственной математической очевидности созерцания, эвклидова геометрия, имеющая с популярной геометрией всех времен только самую поверхностную тождественность, в самых только узких пределах ("на бумаге") приблизительным образом согласуется с созерцаемым. Как дело обстоит при больших расстояниях, видно из простого факта, что параллельные линии пересекаются на горизонте. Вся живописная перспектива основана на этом. Тем не менее Кант, беря исходной точкой наивное сравнение величин, совершенно непростительным для западного мыслителя образом уклонялся от "математики далеких пространств" и постоянно, совершенно по-античному, ссылался на маленькие фигуры, на примере которых, вследствие именно их незначительной величины, специфически западная проблема бесконечных как раз не находила себе никакого применения. Эвклид также избегал ссылаться для доказательства справедливости своих аксиом на пример такого треугольника, три вершины которого определялись бы местонахождением наблюдателя и двумя неподвижными звездами, и который, следовательно, не мог быть ни нарисован, "ни созерцаем"; это является, однако, вполне обоснованным для античного мыслителя. В нем действовало то же самое чувство, которое испытывало страх перед иррациональным и не дерзало понять ничто как нуль, как число, то чувство, которое при

125

созерцании космических отношений закрывало глаза на неизмеримое, чтобы сохранить символ меры.
Идеи Аристарха Самосского, около 270 г. начертавшего систему вселенной, при вторичном открытии Коперником так
глубоко взволновавшую метафизические страсти Запада -
стоит только вспомнить Джордано Бруно - и ставшую осуществлением огромных ожиданий и подтверждением того фаустовского, готического мироощущения, которое уже в архитектуре соборов принесло свою жертву идее бесконечного пространства, эти идеи были встречены античностью с полным равнодушием и вскоре - хочется сказать намеренно - были забыты. И действительно, Аристархова система вселенной для этой культуры в душевном смысле лишена значения. Она могла даже стать опасной для ее основной идеи. И все-таки, в отличие от Коперниковой - и этот основной факт оставлялся всегда без внимания - своей особой формулировкой она была точно приноровлена к античному мироощущению. Аристарх в качестве внешней границы космоса принимал телесно вполне ограниченный, оптически усвояемый пустой шар, в середине которого находится мыслимая в Коперниковом смысле планетная система. Таким образом был устранен принцип бесконечного, могший стать опасным для чувственно-античного понимания предела. Мы не встречаем в античности ни одного намека на мысль о бесконечности мирового пространства, каковая мысль, по-видимому, кажется в данном случае неизбежной и давно сделалась доступной вавилонскому мышлению. Даже мы видим обратное. Архимед в своем сочинении о "числе песка" - уже само слово указывает, что здесь мы имеем дело с опровержением всяких тенденций в сторону бесконечного, несмотря на что его все еще считают первым шагом на пути к современному интегральному счислению - доказывает, что это стереометрическое тело (так как Аристархов космос является именно таковым), будучи наполнено атомами (песком), приводит нас к очень большим, однако не бесконечным числовым результатам. Это равносильно отрицанию всего того, что мы называем анализом. Вселенная нашей физики зиждется на строгом отрицании всякой материальной ограниченности, как это доказывают постоянно опровергаемые и вновь навязчиво проникающие в умы теории материального, т.е. условно наглядного мирового эфира. Платон, Аполлоний и Архимед, несомненно самые проницательные и смелые математики древности, создали на основании пластически-античного понятия предела совершенную систему чисто оптического анализа ставшего. Они пользуются глубоко продуманными и малодоступными для

126

нас методами особого интегрального исчисления, имеющими
лишь кажущееся сходство с методом определенного интеграла
Лейбница, и применяют геометрические места точек и координаты, являющиеся определенными именованными размерами и протяженностями, в противоположность неименованным пространственным отношениям и значимости точек в зависимости от их положения в пространстве, как это мы встречаем у Ферма и в особенности у Декарта. Сюда относится в первую очередь метод истощения величин Архимеда, изложенный в недавно открытом его сочинении, обращенном к Эратосфену, в котором он выводит квадратуру сегмента параболы, прибегая к исчислению вписанных прямоугольников (а не к исчислению подобных многоугольников). Но как раз тот остроумный, бесконечно запутанный прием, при помощи которого он, следуя некоторым идеям Платона, достигает результата, осязательным образом вскрывает огромную разницу между этой интуицией и по внешности сходной с ней Паскалевой. Если не считать Риманова понятия интеграла, наиболее резкую противоположность его приему представляют собой наши современные (к сожалению, так до сих пор именуемые) квадратуры, причем в последнем случае значится, что "поверхность" ограничена функцией, и нет никакого намека на применение начертательного приема. Нигде обе математики не соприкасаются более близко и нигде не ощущается с большей очевидностью непреодолимая пропасть, разделяющая две души, выражением которых они являются.
Чистые числа, феномен которых древние египтяне, движимые страхом перед их таинственным происхождением, таили в стиле своих храмовых зал, пирамидах и рядах статуй, были также и для эллинов ключом к смыслу всего ставшего, неподвижного и, следовательно, преходящего. Математическое число в качестве формального основного принципа протяженного мира, который получает свое существование только из бодрствующего человеческого сознания и существует только для него, находится через посредство причинной необходимости в связи со смертью так же, как хронологическое число находится в связи со становлением, с жизнью, с необходимостью судьбы. Эта связь математической формы с концом органического существования, с явлением его неорганических остатков, т.е. трупа, все с большей очевидностью вскрывает перед нами происхождение всех больших искусств. Мы уже имели случай говорить о происхождении ранней орнаментики из погребального культа. Числа - символы преходящего. Неподвижные формы отрицают жизнь. Формулы и символы вводят неподвижность в картину природы. Числа убивают.

127

Матери "Фауста", величественно царят в одиночестве "в беспорядочных областях призраков", где

Образованье, преобразованье
И вечной мысли вечное дрожанье,
Вкруг образы всех тварей, словно дым.

("Фауст", II ч. Пер. Фета).

Здесь Гёте сближается с Платоном в общем предугадывании какой-то последней тайны. Матери, недостижимое - идеи Платона - обозначают возможности духа, его не родившиеся формы, которые в видимом мире, образовавшемся с глубокой внутренней необходимостью из идеи этого духа, обрели свое проявление в виде творящей и созданной культуры , в виде искусства, мыслей, государства и религии. На этом основана родственность системы чисел известной культуры с ее идеей мира, и благодаря такому соотношению система чисел становится чем-то большим, чем только знание и познание, и приобретает значение мировоззрения, следствием чего является существование стольких же математик - миров чисел - сколько существует высоких культур. Только благодаря этому становится понятной причина и неизбежность того обстоятельства, что великие математические мыслители, художники в царстве чисел, отправляясь от религиозной интуиции, достигли открытия основных математических проблем своей культуры. Так следует рисовать себе сознание античного аполлоновского числа Пифагором, основавшим религию. То же исконное чувство руководило великим Николаем Кузанским, епископом Бриксенским, когда он около 1450 г., исходя из созерцания беспредельности Бога в природе, открыл основы исчисления бесконечных величин. Лейбниц, приведший два столетия спустя эту идею к завершению, сам исходил из чистого метафизического размышления о принципе божественного и его отношении к беспредельной протяженности и таким образом создал analysis situs, эту, пожалуй, более гениальную интерпретацию чистого, отвлеченного от всего чувственного, пространства, богатые возможности которой были использованы только в XIX в. Грассманом в его учении о протяженности и Риманном в его символике двухсторонних плоскостей, выражающих природу уравнений. Декарт, глубоко верующий христианин из кругов Пор-Руаяля, следуя внутреннему побуждению, попутно с философско-математическим преподаванием вернул в католичество пфальц-графиню Елизавету и шведскую королеву Христину, дочь Густава-Адольфа. Кеплер и Ньютон, оба строго

128

религиозные натуры, подобно Платону были вполне убеждены, что им удалось при посредстве чисел интуитивно познать сущность божественного мироустройства.

Принято говорить, что Диофант освободил античную
арифметику от ее чувственной связанности, расширив и раз-
вив ее, и создал алгебру, как учение о неопределенных величинах. Это во всяком случае не только обогащение, а полное преодоление античного мирочувствования, и одного этого факта достаточно, чтобы доказать, что Диофант внутренне уже не принадлежал к античной культуре. В нем действовало в отношении к действительному, ставшему новое ощущение чисел или, скажем, новое чувство предела, совершенно от личное от прежнего эллинского, из чувственно-осязательной значимости границ которого развились наряду с эвклидовой геометрией осязаемых тел также и подражавшая ей пластика нагой статуи. Подробности развития этой новой математики нам неизвестны. У Диофанта, из-за намерения следовать эвклидовскому ходу мыслей, вырастает это новое чувство предела - я буду называть его магическим, - даже еще не сознающее свою полную противоположность искомой античной формулировке. Идея числа как величины не расширяется, а незаметно упраздняется. Грек никогда не мог бы объяснить, что значат неопределенное число "а" или отвлеченное число 3, - оба не являющиеся ни величинами, ни мерами, ни протяжением. Новое воплощенное в этих родах чисел чувство предела уже лежит в основе рассуждений Диофанта; само же буквенное исчисление, в обличий которого фигурирует в настоящее время алгебра, претерпевшая за протекший промежуток времени еще одну полную переработку, было введено в употребление впервые Виетой в 1591 г. в качестве результата бессознательной, но вполне заметной оппозиции поддерживающемуся под античность счислению Ренессанса.
Диофант жил около 250 г. после Р.Х., следовательно в третьем столетии арабской культуры, исторический организм которой до сего времени скрывался под внешними формами эпохи Римской империи и "Средних веков"* и к кругу которой принадлежит все то, что возникло с начала нашего летосчисления в странах грядущего распространения ислама. Как раз в это время перед лицом нового ощущения пространства базилик, мозаик и саркофаговых рельефов

* См. табл. I-III.

129

раннехристианского-сирийского стиля померк последний признак аттической статуарной пластики. Тогда вновь образовались архаическое искусство и строго геометрический орнамент. Тогда Диоклетиан как раз заканчивал создание калифата под внешним видом римского государства. 500 лет разделяют Эвклида и Диофанта, Платона и Плотина, т.е. последнего завершающего мыслителя - Канта законченной культуры, от первого мистического гения - Данте вновь нарождающейся культуры.
Здесь в первый раз мы соприкасаемся с до сих пор остававшимся неизвестным проявлением тех великих индивидуумов, возникновение, возрастание и увядание которых под тысячеобразной спутывающей внешностью составляют собственную сущность всемирной истории. Ушедшая вместе с римским духом античная духовная стихия, "телом" которой являлась историческая действительность античной культуры с ее созданиями, мыслями, деяниями и обломками, родилась около 1100 г. до Р.Х. в местностях вокруг Эгейского моря. Пробивающаяся на востоке начиная с Августа под покровом античной цивилизации арабская культура имеет местом своего происхождения страны между Нилом и Ефратом, Каиром и Багдадом. В качестве проявлений этой новой души приходится рассматривать почти все "позднеантичное" искусство времен императоров, все охваченные юношеским пылом восточные культы, как-то: Митры, Сераписа, Гора, Исиды и Сирийских Ваалов Эмезы и Пальмиры, христианство и неоплатонизм, императорские форумы в Риме и построенный там сирийцем Пантеон, эту самую первую из всех мечетей.
То обстоятельство, что все еще продолжали писать по-гречески и полагали мыслить по-гречески, значит не больше другого аналогичного явления, а именно, что наука до Канта все еще предпочитала латинский язык, или что Карл Великий "возобновил" Римскую Империю.
У Диофанта число более не имеет значения меры или сути пластических вещей. На равеннских мозаиках человек более не тело. Постепенно греческие обозначения утратили свое первоначальное содержание. Мы покидаем сферу аттической ??????????? , стоической ???????? и ??????. Хотя Диофант и не знает еще нуля и отрицательных чисел, зато и пластические единства пифагорейских чисел ему также более уже незнакомы. С другой стороны, неопределенность арабских отвлеченных чисел представляет собою нечто совершенно отличное от закономерной изменчивости позднейшего западного числа, т.е. функции.

130

Магическая математика, т.е. алгебра, после Диофанта -
учение которого уже заставляет предполагать некоторое пред-
шествующее развитие - продолжала развиваться дальше логическим и широким движением, отдельные подробности которого остаются для нас неизвестными, и достигла своего завершения в эпоху Абассидов, около IX столетия, как это видно по уровню знаний у Альхваризми и Альсидшзи. И только опять по истечении целых пятисот лет, в совершенно новых, отдаленных странах, начинается новый величественный процесс перетолкования магического мира чисел, переданного нам испанскими арабами, в функциональный мир чисел Западной Европы, начинается мощное сопротивление против надвигающегося чуждого мирочувствования с его внутренне достигшим зрелости истолкованием пространства; юная готическая душа была вынуждена бороться против этого чуждого элемента и сломить его, чтобы сохранить свое подлинное, собственное, следствием чего явилась борьба во всех архитектурах, в каждом фасаде, каждом орнаменте, каждом символе, каждой метафизической и математической проблеме, та борьба, чье немое величие ни разу еще никем не было прочувствовано.
Какое значение рядом с Эвклидовой геометрией имеет аттическая пластика - равнозначащий язык форм в ином одеянии - или рядом с анализом пространства фугированный стиль инструментальной музыки, то же значение рядом с восточной алгеброй имеют магическое искусство мозаик, сассанидское искусство арабесок, позднее еще с большей пышностью развитое Византией, с его чувственно-отвлеченным слиянием мотивов органических форм, и, наконец, барельефы Константиновского стиля с их смутными тенями глубин оставленного свободным между изваянными фигурами фона. Как относится алгебра к античной арифметике и западноевропейскому анализу, так же относится купольная базилика к дорическому храму и готическому собору.
Диофант совсем не был великим математиком. Большей
части того, что связывается с его именем, мы не найдем в его
писаниях, а то, что там находится, конечно, не является его исключительной собственностью. Его случайное значение основано на том, что у него у первого, насколько нам известно, выступает с полной несомненностью это новое чувство чисел. По сравнению с мастерами, работавшими над завершением какой-либо математики, как, например, Аполлоний и Архимед в области античной и соответственно Гаусс, Коши, Риман в области западноевропейской математики, мы находим у Диофанта и Менелая что-то примитивное, что обыкновенно до

131

сих пор обозначали как декадентство. Со временем мы научимся лучше понимать и ценить это явление - подобно тому, как с недавнего времени перестают относиться презрительно к мнимому позднеантичному искусству, рассматривая его как попытку выражения только что нарождающегося раннеарабского мироощущения. Такой же архаической, примитивной и ищущей представляется математика Николая Оресмского, епископа г. Лизье (с 1323 по 1382 г.), применившего в первый раз на Западе свободный вид координат и даже степени с дробными показателями, указующие на несомненно новое, хотя еще неясное чувство чисел, совершенно не античное, но также отличное и от арабского. Если припомним, что рядом с Диофантом стоят раннехристианские саркофаги римских собраний, а рядом с Николаем Оресмским готические одетые статуи немецких соборов, то, несомненно, в обоих примерах хода математической мысли, отражающих одинаково раннюю ступень развития интеллекта, мы найдем нечто родственное. Стереометрическое чувство предела, достигшее у Архимеда высшей степени утонченности и элегантности, было утрачено. Преобладало смутное, устремленное к далекому, мистическое настроение, не имевшее ничего общего с аттической ясностью и свободой. Перед нами рожденные самой землей люди молодой страны, а не жители большого города, как Эвклид или д'Аламбер *. Глубокие и сложные образования античного мышления сделались непонятными, на место их выступили смутные и новые, для которых еще не найдена была ясная, по-городскому - интеллектуальная формулировка. Таково готическое состояние всякой юной культуры, пройденное также и античностью в раннедорическую эпоху, от которой ничего не осталось, кроме погребальных ваз дипилоновского стиля. Только в IX и Х вв. в Багдаде концепции эпохи Диофанта получили окончательную разработку и достигли завершения благодаря трудам зрелых мастеров, не уступающих по значению Платону и Гауссу.

Ваш комментарий о книге
Обратно в раздел история











 





Наверх

sitemap:
Все права на книги принадлежат их авторам. Если Вы автор той или иной книги и не желаете, чтобы книга была опубликована на этом сайте, сообщите нам.