Библиотека
Теология
Конфессии
Иностранные языки
Другие проекты
|
Гофман Клаус. Можно ли сделать золото? Мошенники, обманщики и ученые в истории химических элементов
Глава 7
ИССЛЕДОВАНИЯ И ОТВЕТСТВЕННОСТЬ - СЕГОДНЯ И В БУДУЩЕМ
Политика бомбы
Получение атомной энергии и производство искусственных элементов в
атомном реакторе представляют лишь одну сторону новой эпохи
научно-технического прогресса. Ибо, к сожалению, "атомный век" начался не с
создания атомных электростанций, то есть с мирного использования ядерной
энергии, которая служит лишь благу человечества.
6 августа 1945 года. Ранним утром этого дня один-единственный самолет
пролетел на большой высоте над Хиросимой. Во второй мировой войне этот
крупный японский город избежал американских бомбежек. В то утро, в самом
начале девятого часа, американский бомбардировщик типа В-29 сбросил свой
смертоносный груз. Всего одна бомба на парашюте медленно и незаметно
приближалась к центру города. Она взорвалась на высоте около 500 м. Начался
кромешный ад. Вслед за молнией взрыва, которая на километры осветила ярким
светом пространство вокруг, появился огненный шар гигантских размеров.
Огромное грибовидное облако заклокотало, поднимаясь вверх более чем на 15
км. Это адское зрелище сопровождалось длительным, ужасающим, неслыханным
дотоле громыханием.
Одна-единственная атомная бомба из урана-235 уничтожила целый японский
город. Сила ее взрыва в пересчете составила почти 20000 т тринитротолуола,
что соответствовало 2000 тех больших десятитонных бомб, которые во вторую
мировую войну превращали в золу и щепки целые жилые кварталы.
Те, кого пощадили огонь и взрывная волна, стали жертвами радиоактивного
излучения, которое создало новый вид гибели: лучевую смерть. Жители
Хиросимы, пережившие первые моменты адского ужаса, после длительных мучений
погибали от коварной лучевой болезни. В 1945 году из числа населения
Хиросимы погибло 141 000 человек, в 1946 году к ним добавилось еще 10 000. С
тех пор атомная смерть находит год за годом все новые жертвы среди японцев.
Потомки тех несчастных, которые 6 августа 1945 года подверглись действию
смертоносных лучей первой атомной бомбы, страдали, страдают и сейчас
телесными уродствами. Опасаться следует также лучевых повреждений
генетического аппарата.
9 августа 1945 года еще одна американская атомная бомба опустошила
город Нагасаки. В этой бомбе в качестве взрывчатого вещества использовался
искусственный элемент плутоний, который оправдал свое наименование, явившись
посланцем царства смерти. Сбрасывание обеих атомных бомб военными США
явилось преступным экспериментом по отношению к беззащитному гражданскому
населению. К тому времени уже не было никакой военной необходимости в
применении такого оружия.
После поражения фашизма и окончания второй мировой войны мир не стал
более миролюбивым. Холодная война, эта вызывающая игра сил Соединенных
Штатов по отношению к Советскому Союзу и развивающемуся социалистическому
лагерю, стала принимать опасные формы эскалации. Во всех политических
стычках США брали на себя роль мирового жандарма и выставляли "пугало"
атомной бомбы. У Советского Союза оставался один ответ на эту дерзкую
политику силы: как можно скорее положить конец американской монополии на
атомную бомбу.
25 декабря 1946 года в Европе была пущена первая "урановая машина". И.
В. Курчатову и его сотрудникам удалось запустить первый советский атомный
реактор. Через два с половиной года Советский Союз испытал первую атомную
бомбу. Реакционные круги США сразу же начали разжигать настоящую атомную
истерию. Однако такое провокационное поведение далеко не всегда встречало
одобрение в капиталистическом мире. Когда Отто Хан узнал об успешном
советском опытном взрыве, он сразу же отметил: "Это -- хорошая весть; если
Советская Россия будет тоже иметь атомную бомбу, тогда не будет войны".
Предложения Советского Союза о немедленном запрещении атомной бомбы
игнорировались США. В январе 1950 года президент США Трумэн открыто заявил:
"Я дам указания продолжать развертывание атомного оружия, в том числе так
называемой водородной бомбы, или "сверхбомбы". Сообщение Трумэна явилось
сигналом к весьма опасной гонке атомного вооружения. Ведь американский
президент санкционировал создание термоядерной бомбы.
То, что непрерывно протекает на Солнце и поддерживает его существование
-- превращение водорода и его изотопов в гелий с выделением энергии,
совершается в водородной бомбе молниеносно и с величайшей разрушительной
силой. Однако для запуска такого процесса требуются температуры от 50 до 100
миллионов градусов, которых на Земле можно достичь кратковременно лишь с
помощью атомной бомбы в качестве "спички".
В 1954 году в американском научном журнале "Физикл ревью" появилось
несколько публикаций творческой группы Сиборга и Гиорсо о вновь открытых
элементах с порядковыми номерами 99 и 100. Эти сообщения содержали неясные
формулировки, в которых умалчивалась определенная информация. В истории
научных публикаций такой случай был необычным. Основания для утаивания стали
известны лишь в 1955 году, когда была приоткрыта завеса над происхождением
этих элементов.
До 1 ноября 1952 года в Тихом океане находился идиллический островок,
называемый Элугелаб. Он относился к атоллу Эниветок из группы Маршальских
островов. В тот день остров Элугелаб прекратил свое существование. Он
взлетел на воздух в результате первого американского термоядерного испытания
под кодовым названием "Майк". Сила взрыва составила 3 Мт, то есть три
миллиона тонн тринитротолуола. Это соответствует общей взрывной силе всех
бомб, сброшенных во вторую мировую войну, и примерно в 200 раз превышает
взрывное действие хиросимской бомбы! Ударная волна взрыва была
зарегистрирована сейсмическими станциями всего мира; это было первое
землетрясение, спровоцированное человеком. Там, где находился остров
Элугелаб, на дне Тихого океана зиял кратер диаметром 1,5 км и глубиной 150
м.
Беспилотные самолеты пролетали сквозь взрывное облако и собирали
радиоактивную пыль для научных исследований. Позднее были переработаны
центнеры коралловой породы с окружающих островов. В этих остатках
термоядерного взрыва в декабре 1952 года американские ученые нашли 99-й
элемент, а спустя некоторое время, в марте следующего года -- 100-й элемент,
теперь именуемые эйнштейнием и фермием. Нейтронная молния "Майк'а" --
нейтронную дозу оценивают в 10[22] нейтронов/см[2]
-произвела превращение элементов нового рода. При этом из урана поджигающей
бомбы образовались изотопы урана с необычайно большим содержанием нейтронов,
которые, многократно претерпев бета-распад, превратились в конце концов в
изотопы элементов 99 и 100. Если бы этот процесс захотели провести в
исследовательском реакторе с интенсивностью потока в 10[13]
нейтронов/см[2] то потребовалось бы 30 лет, чтобы достичь
требуемой дозы нейтронов. "Майк" совершил это в миллионную долю секунды.
Странно и почти безответственно звучит "благодарность" ученых,
открывших эти элементы, которую они выразили научной лаборатории в
Лос-Аламосе -- фабрике атомных бомб США.
В августе 1953 года была взорвана первая советская водородная бомба.
Военные и политики США испытали немалый страх, когда их специалисты
доложили, что Советский Союз уже располагает "сухой" транспортабельной
водородной бомбой с зажигательным веществом -- дейтеридом лития. Бомба США,
взорванная в ноябре 1952 года, была, напротив, нетранспортабельным чудовищем
в 65 т, непригодным для военного использования.
На это США ответили секретным "сверхоружием" и в марте 1954 года
подожгли первую так называемую трехступенчатую бомбу (Fission-Fusion-Fission
Bomb[70]). Поджигателем для собственно водородной бомбы служило
обычное атомное взрывчатое вещество. То и другое было окружено оболочкой из
урана-238, который также становится делимым под действием быстрых нейтронов
взорвавшейся Н-бомбы. Многоступенчатые бомбы обладают неслыханной
разрушительной силой, которая может достигать 50 Мт и более. С таким
сверхоружием можно одним ударом опустошить целые страны и континенты.
Ужасающее действие водородной бомбы не ограничивается ее взрывной
силой, превышающей силу атомной бомбы в тысячу раз. Она вызывает излучения,
интенсивность которых не знает себе равных на Земле и является смертельной
для всех живых существ в радиусе действия бомбы. Когда же активность
несколько снижается, остаются достаточно опасные продукты деления, которые
попадают на поверхность Земли вместе с радиоактивными осадками и заражают
большие пространства. Особенно опасны долгоживущие радиоактивные изотопы,
такие, как углерод-14, проникающий в биосферу, цезий-137 и более всего
стронций-90. Радиоактивный стронций проникает с пищей в организм,
накапливается в костях и неизбежно вызывает рак. Еще страшнее генетические
дефекты, вызываемые радиоактивным излучением, которые приводят к изменению
наследственного аппарата и повреждению потомства.
Лауреат Нобелевской премии по химии и лауреат Международной Ленинской
премии, американский ученый Лайнус Полинг[71], который всем своим
авторитетом борется за запрещение атомного оружия, весьма наглядно
представил опасность радиоактивных осадков: одна чайная ложка стронция-90,
если ее разделить поровну между всеми людьми, вызовет их гибель в течение
немногих лет. Полинг рассчитал, что одна сверхбомба при своем взрыве
выбрасывает в атмосферу нашей планеты в тысячу раз большее количество
стронция-90.
Вынужденный считаться с военным давлением Советский Союз не потерял из
виду главной цели: мирное использование атомной энергии, служащее для блага
человека. Первая атомная электростанция, пущенная в июле 1954 года, и первый
атомный корабль -- советский ледокол "Ленин" -- красноречиво говорят об
этом.
Борьбу с опасной игрой империалистов США атомным оружием как средством
политического давления и нажима, против безответственного испытания Н-бомбы,
которое угрожает дальнейшему существованию человечества, вели и ведут не
только Советский Союз и страны социалистического лагеря, но и представители
капиталистического мира, такие, как Фредерик Жолио-Кюри, Лайнус Полинг,
Альберт Швейцер, Отто Хан. Особенно убедительным было в 1957 поду воззвание
18-ти западногерманских атомщиков во главе с Ханом, Вейцзекером и
Гейзенбергом, которые протестовали против военного использования атомной
энергии, против опасности атомной войны и снаряжения ФРГ атомным оружием.
Ежегодные Пагуошские конференции также стали важным событием. Именитые
ученые встречаются здесь, чтобы обсудить вопросы разоружения и борьбы с
злоупотреблениями атомной энергией.
Сегодня, благодаря обязательствам, взятым на себя Советским Союзом и
другими социалистическими государствами, имеются соглашения по запрещению
испытаний ядерного оружия в атмосфере, в космическом пространстве и под
водой, а также договоренности по вопросам нераспространения атомного оружия.
Это, к сожалению, еще не значит, что опасность атомной войны устранена.
Овладение превращением элементов используется во вред военно-промышленным
комплексом США -- для изобретения еще более страшных видов оружия. Последним
порождением этого безумия вооружения является нейтронная бомба США,
разработанная в качестве нового атомного средства массового уничтожения. В
процессе превращения водорода и его атомов в гелий изобретателям этого
"малокалиберного" ядерного оружия удалось обратить 80 % энергии взрыва в
сверхбыстрые нейтроны, которые уничтожают все живое, а материальные ценности
оставляют практически неповрежденными.
Мощные демонстрации протеста объединяют миролюбивое человечество в
борьбе против" нейтронной бомбы и ее использования в войсках НАТО.
Успехи исследований в Дубне и Беркли
Открытие последних трех актиноидов--элементов 101, 102 и 103 удалось
совершить с 1955 по 1961 годы. Чтобы осуществить синтез 101-го элемента из
эйнштейния, в США в 1955 году было использовано все имеющееся количество
99-го элемента: 10[9] атомов -- Около 10[-13] г! Это
количество было получено обстрелом плутония нейтронами в специально
изготовленном испытательном реакторе. После бомбардировки мишени из
эйнштейния ядрами гелия в 60-дюймовом циклотроне в Беркли смогли уловить
буквально 17 атомов нового 101-го элемента -- менделевия. Трудность
постановки эксперимента с несколькими атомами невообразимо велика. Однако их
удалось обнаружить. Это было продемонстрировано всем окружающим весьма
впечатляюще: каждый раз, когда был "пойман" атом менделевия, в лаборатории
Калифорнийского университета в Беркли раздавался пожарный сигнал.
Американские ученые позволили себе такую шутку: счетчик они присоединили к
пожарной сирене. Это продолжалось до тех пор, пока не вмешалась пожарная
служба и запретила "хулиганство".
Менделевий является последним из элементов, полученных в циклотроне.
Для синтеза следующих элементов просто-напросто нет достаточного исходного
материала. Все большие трудности создавало для ученых одно неприятное
свойство трансуранов: их самопроизвольное деление и все уменьшающийся период
полураспада. За то время, которое требовалось для получения в реакторе
исходного элемента в весомых количествах, он успевал в значительной мере
исчезнуть в результате начавшегося распада. Прекрасным примером может
служить фермий-257-- наиболее тяжелый известный изотоп, который удалось
получить. Период полураспада фермия-257 составляет 97 дней, что позволило
считать его подходящим исходным веществом для получения трансфермиевых
элементов. Однако при облучении в мощном реакторе из фермия-257 образуется
только короткоживущий фермий-258, который самопроизвольно делится за
считанные микросекунды. После этого малорадостного открытия надежда
ступенчатого получения последующих трансуранов путем захвата нейтронов
быстро исчезла. Исследователи дошли до такой точки, когда для синтеза
следующих трансуранов требовалось попросту придумать что-то новое.
Имелся лишь один выход. Нужно было использовать те трансураны, которые
можно было добыть в больших количествах, прежде всего -- это плутоний.
Надеялись также получить в достаточных количествах кюрий и калифорний после
многолетнего облучения в реакторе. Конечно, используя трансураны с меньшим
зарядом ядра, необходимо было испытать более тяжелые снаряды. Нейтроны и
альфа-частицы являлись уже недостаточно мощными. Подходящими по массе
снарядами были ядра кислорода, азота, углерода, бора и неона, полученные с
помощью новых ионных источников. Безусловно, ускорить тяжелые частицы до
необходимой энергии возможно только с помощью высокоэффективных ускорителей.
Начиная с середины 50-х годов американские физики все свои надежды возлагали
на новый линейный ускоритель тяжелых ионов HILAC, а в последнее время -- на
еще более мощный Super-HILAC. Их советские коллеги использовали оправдавшие
себя ускорители частиц У-200 и У-300. В испытании находится новый циклотрон
У-400, который способен ускорить до больших энергий даже ядра урана.
Также с середины 50-х годов длится спор между американскими и
советскими физиками по поводу того, кто же первым синтезировал и точно
идентифицировал элементы с 102 по 105. До сего времени нет единства в
вопросе приоритета и названии новых элементов: 102-- жолиотий (по советскому
представлению) или нобелий (по американским предложениям): 103 --
резерфордий или лоуренсий: 104 -- курчатовий или резерфордий: 105 --
нильсборий и ханий?
Причина таких разногласий заключается, несомненно, в том, что
американская группа ученых не могла больше претендовать на приоритет. Со
времени основания Объединенного института ядерных исследований (ОИЯИ) в
Дубне, в 1956 году, решающие импульсы в исследовании трансуранов исходили от
советских ученых. С тех пор прогресс в этой специальной отрасли определяли
советские исследователи под руководством физика Г. Н. Флерова и его коллеги
Ю. Ц. Оганесяна. ОИЯИ в Дубне стал одновременно символом социалистической
научной интеграции. В этом институте работают исследователи из всех
социалистических стран; они все более широко участвуют в существенных
открытиях в ядерной физике.
Все началось со 102-го элемента. В Стокгольме в 1957 году подобрался
коллектив из американских, английских и шведских физиков. Эта группа
считала, что получила изотопы элемента 102, названного ими нобелием, в
результате бомбардировки кюрия ядрами углерода. Несколько позже Флеров
объявил об удачном синтезе 102-го элемента, осуществленном на циклотроне
Института атомной энергии в Москве, путем обстрела плутония-241 ядрами
кислорода. Исследователи из Беркли не отставали и также сообщили об успешной
идентификации 102-го элемента. Однако все приведенные данные и факты
противоречили друг другу. Поэтому американцы стали называть новый элемент не
нобелием, a no believium, что в вольном переводе означает "не верю". Физики
в Дубне в течение ряда лет систематически дорабатывали эти результаты с тем,
чтобы разъяснить противоречия. Только в 1963 году им удалось получить
однозначные доказательства. Флеров и его сотрудники смогли безупречно
синтезировать 102-й элемент из урана и ионов неона:
[238]U + [22]Ne = [256]Х + 4n
Физикам пришлось выдумывать изощренные методы разделения, измерения и
идентификации для того, чтобы вообще обнаружить новый элемент. Ведь он
довольно быстро прощается с этим миром, обладая периодом полураспада всего
лишь 8 с.
Когда ученые из Беркли смогли располагать 3 мкг калифорния, конечно, в
виде смеси различных изотопов, они решились на синтез следующего элемента --
103-го. Эти 3 мкг калифорния в течение трех лет бомбардировали в линейном
ускорителе ядрами атома бора. Было мало надежды на благоприятный результат.
Из 100 миллиардов ядер бора только одно могло проникнуть в ядро калифорния,
однако ядро нового атома в 99 % случаев должно было снова распасться в
результате самопроизвольного деления. Американцы рассчитали, что из 100 000
слияний только одно должно было образовать ядро с 103 протонами -- искомый
элемент 103.
В 1961 году группа из Беркли сочла, наконец, что идентифицировала
несколько атомов одного из изотопов 103-го элемента. Через несколько лет в
Дубне советские исследователи, синтезировали из америция-243 и ионов
кислорода другой изотоп. Они сразу же исправили прежние данные своих
американских коллег. Кто же прав? Одна проблема, по крайней мере, еще до сих
пор не разрешена: как называть 103-й элемент? Лоуренсий или резерфордий?
С особенным нетерпением ожидалось открытие 104-го элемента -- первого
представителя трансактиноидов. Согласно актиноидной теории, элемент 104,
будучи экагафнием, должен был бы обладать свойствами, сходными с гафнием или
цирконием. В 1964 году коллективу ОИЯИ в Дубне под руководством Флерова
удался большой бросок. После бомбардировки плутония-242 ионами неона впервые
были обнаружены атомы 104-го элемента -- курчатовия:
[244]Pu + [22]Ne = [260]X + 4n
До сих пор новый способ его физико-химической идентификации считается
мастерским, ибо образовавшийся изотоп самопроизвольно распадается с периодом
полураспада всего лишь 0,1 с. Поэтому требовались необыкновенно быстрые
действия для того, чтобы химически доказать, что 104-й элемент следует
отнести к группе четырехвалентных элементов, вместе с гафнием и цирконием. В
Дубне это удалось подтвердить с помощью остроумной экспериментальной
техники. Для этой цели использовалась летучесть галогенидов при повышенных
температурах: синтезированные атомы 104-го элемента, отброшенные из мишени в
результате радиоактивного выброса, подвергали хлорированию при 350 °С.
Пропускаемый газообразный хлор смешивали с парами трихлорида кюрия,
тетрахлорида циркония и пентахлорида ниобия. Далее эти хлориды оседали на
различных участках термохроматографической колонки, в зависимости от того,
был ли это три-, тетра- или пента-хлорид. Хлорид 104-го элемента
сконденсировался на том же месте, что и тетрахлорид циркония.
Американцы, которые тоже были близки к открытию 104-го элемента,
получили его в виде изотопа, излучающего альфа-частицы, при бомбардировке
калифорния-249 ядрами углерода. Образующийся из него в результате изотоп
102-го элемента можно было безупречно идентифицировать на основании его
характеристического рентгеновского излучения. Закон Мозли подтвердился еще в
одном случае. 105-й элемент получен группой Флерова уже в 1967 году в
результате ядерной реакции америция с ионами неона. Но по уравнению
[243]Am + [22]Ne = [260]Х + 4 (5)n
образовывался лишь один атом за час. Такого скудного выхода было
недостаточно, чтобы окончательно подтвердить открытие. Только в начале 1970
года из Дубны пришло известие о точной идентификации элемента 105. В том же
году добились успеха Гиорсо с сотрудниками. В Беркли они синтезировали
изотоп 105-го элемента путем бомбардировки 60 мкг калифорния ядрами азота:
[249]Cf + [15]N = [260]Х + 4n
Элемент 105, будучи аналогом тантала, должен быть пятивалентным. Это
удалось безупречно доказать дубнинским исследователям с помощью техники
хлорирования, уже испытанной на 104-м элементе.
Сверхтяжелые элементы на островке устойчивости
Теоретическое и экспериментальное изучение устойчивости ядра дало
советским физикам повод для пересмотра применявшихся до сих пор методов
получения тяжелых трансуранов. В Дубне решили пойти новыми путями и взять в
качестве мишени свинец и висмут.
Ядро, как и атом в целом, имеет оболочечное строение. Особой
устойчивостью отличаются атомные ядра, содержащие 2--8--20--
28--50--82--114--126--164 протонов (то есть ядра атомов с таким порядковым
номером) и 2--8--20--28--50--82--126--184--196-- 228--272--318 нейтронов,
вследствие законченного строения их оболочек. Только недавно удалось
подтвердить эти воззрения расчетами с помощью ЭВМ. Такая необычная
устойчивость бросилась в глаза, прежде всего, при изучении
распространенности некоторых элементов в космосе. Изотопы, обладающие этими
ядерными числами, называют магическими. Изотоп висмута [209]Bi,
имеющий 126 нейтронов, представляет такой магический нуклид. Сюда относятся
также изотопы кислорода, кальция, олова. Дважды магическими являются: для
гелия -- изотоп [4]Не (2 протона, 2 нейтрона), для кальция --
[48]Са (20 протонов, 28 нейтронов), для свинца --
[208]Pb (82 протона, 126 нейтронов). Они отличаются совершенно
особой прочностью ядра.
Используя источники ионов нового типа и более мощные ускорители тяжелых
ионов -- в Дубне были спарены агрегаты У-200 и У-300, группа Г. Н. Флерова и
Ю. Ц. Оганесяна вскоре стала располагать потоком тяжелых ионов с необычайной
энергией. Чтобы достичь слияния ядер, советские физики выстреливали ионами
хрома с энергией 280 МэВ в мишени из свинца и висмута. Что могло получиться?
В начале 1974 года атомщики в Дубне зарегистрировали при такой бомбардировке
50 случаев, указывающих на образование 106-го элемента, который, однако,
распадается уже через 10[-2] с. Эти 50 атомных ядер образовались
по схеме:
[208]Pb + [51]Cr = [259]X
Немного позднее Гиорсо и Сиборг из лаборатории Лоуренса в Беркли
сообщили, что они синтезировали изотоп нового, 106-го, элемента с массовым
числом 263 путем обстрела калифорния-249 ионами кислорода в аппарате
Super-HILAC.
Какое имя будет носить новый элемент? Откинув прежние разногласия, обе
группы в Беркли и Дубне, соперничающие в научном соревновании, пришли на
этот раз к единому мнению. О названиях говорить еще рано, сказал Оганесян. А
Гиорсо дополнил, что решено воздержаться от всяких предложений о
наименовании 106-го элемента вплоть до прояснения ситуации.
К концу 1976 года дубнинская лаборатория ядерных реакций закончила
серию опытов по синтезу 107-го элемента; в качестве исходного вещества
дубнинским "алхимикам" послужил "магический" висмут-209. При обстреле ионами
хрома с энергией 290 МэВ он превращался в изотоп 107-го элемента:
[209]Bi + [54]Cr = [261]X + 2n
107-й элемент самопроизвольно распадается с периодом полураспада 0,002
с и, кроме того, излучает альфа-частицы.
Найденные для 106- и 107-го элементов периоды полураспада 0,01 и 0,002
с заставили насторожиться. Ведь они оказались на несколько порядков больше,
чем предсказывали расчеты ЭВМ. Быть может, на 107-й элемент уже заметно
влияла близость последующего магического числа протонов и нейтронов -- 114,
повышающая устойчивость? Если это так, то была надежда получить и
долгоживущие изотопы 107-го элемента, например обстрелом берклия ионами
неона. Расчеты показали, что образующийся по этой реакции изотоп, богатый
нейтронами, должен был бы обладать периодом полураспада, превышающим 1 с.
Это позволило бы изучить химические свойства 107-го элемента -- экарения.
Самый долгоживущий изотоп первого трансурана, элемента 93 --
нептуний-237,-- обладает периодом полураспада 2 100 000 лет; самый
устойчивый изотоп 100-го элемента -- фермий-257-- только 97 дней. Начиная с
104-го элемента периоды полураспада составляют лишь доли секунды. Поэтому,
казалось, что нет абсолютно никакой надежды обнаружить эти элементы. Для
чего же нужны дальнейшие исследования? Альберт Гиорсо, ведущий специалист
США по трансуранам, высказался однажды в этой связи: "Причиной для
продолжения поисков дальнейших элементов является просто-напросто
удовлетворение человеческого любопытства -- а что же происходит за следующим
поворотом улицы?" Однако это, конечно, не просто научное любопытство. Гиорсо
давал все же понять, как важно продолжение такого фундаментального
исследования.
В 60-е годы теория магических ядерных чисел приобретала все большее
значение. В "море неустойчивости" ученые отчаянно пытались найти
спасительный "островок относительной устойчивости", на который могла бы
твердо опереться нога исследователя атома. Хотя этот островок до сих пор еще
не открыт, "координаты" его известны: элемент 114, экасвинец, считается
центром большой области устойчивости. Изотоп-298 элемента 114 уже давно
является особым предметом научных споров, ибо, имея 114 протонов и 184
нейтрона, он представляет собой одно из тех дважды магических атомных ядер,
которым предсказывают длительное существование, Однако, что же означает
длительное существование? Предварительные расчеты показывают: период
полураспада с выделением альфа-частиц колеблется от 1 до 1000 лет, а по
отношению к самопроизвольному делению -- от 108 до 10[16] лет.
Такие колебания, как указывают физики, объясняются приближенностью
"компьютерной химии".
Весьма обнадеживающие значения периодов полураспада предсказывают для
следующего островка устойчивости -- элемента 164, двисвинца. Изотоп 164-го
элемента с массовым числом 482 -- также дважды магический: его ядро образуют
164 протона и 318 нейтронов.
Науку интересуют и просто магические сверхтяжелые элементы, как,
например, изотоп-294 элемента 1 10 или изотоп-310 элемента 126, содержащие
по 184 нейтрона. Диву даешься, как исследователи вполне серьезно жонглируют
этими воображаемыми элементами, будто они уже существуют. Из ЭВМ извлекаются
все новые данные и сейчас уже определенно известно, какими свойствами --
ядерными, кристаллографическими и химическими -- должны обладать эти
сверхтяжелые элементы. В специальной литературе накапливаются точные данные
для элементов, которые люди, быть может, откроют лет через 50.
В настоящее время атомщики путешествуют по морю неустойчивости в
ожидании открытий. За их спинами осталась твердая земля: полуостров с
естественными радиоактивными элементами, отмеченный возвышенностями тория и
урана, и далеко простирающаяся твердая земля со всеми прочими элементами и
вершинами свинца, олова и кальция. Отважные мореплаватели уже давно
находятся в открытом море. На неожиданном месте они нашли отмель: открытые
106 и 107-й элементы устойчивее, чем ожидалось.
В последние годы мы долго плыли по морю неустойчивости, рассуждает Г.
Н. Флеров, и вдруг, в последний момент, почувствовали землю под ногами.
Случайная подводная скала? Либо песчаная отмель долгожданного островка
устойчивости? Если правильно второе, то у нас есть реальная возможность
создать новую периодическую систему из устойчивых сверхтяжелых элементов,
обладающих поразительными свойствами.
После того, как стала известна гипотеза об устойчивых элементах вблизи
порядковых номеров 114, 126, 164, исследователи всего мира набросились на
эти "сверхтяжелые" атомы. Некоторые из них, с предположительно большими
периодами полураспада, надеялись обнаружить на Земле или в Космосе, по
крайней мере в виде следов. Ведь при возникновении нашей Солнечной системы
эти элементы так же существовали, как и все прочие.
Следы сверхтяжелых элементов -- что следует под этим понимать? В
результате своей способности самопроизвольно делиться на два ядерных осколка
с большой массой и энергией эти трансураны должны были бы оставить в
находящейся по соседству материи отчетливые следы разрушения. Подобные следы
можно увидеть в минералах под микроскопом после их травления. С помощью
такого метода следов разрушения можно в настоящее время проследить
существование давно погибших элементов. Из ширины оставленных следов можно
оценить и порядковый номер элемента -- ширина трека пропорциональна квадрату
заряда ядра. "Живущие" еще сверхтяжелые элементы надеются также выявить,
исходя из того, что они многократно испускают нейтроны. При самопроизвольном
процессе деления эти элементы испускают до 10 нейтронов.
Следы сверхтяжелых элементов искали в марганцевых конкрециях из глубин
океана, а также в водах после таяния ледников полярных морей. До сих пор
безрезультатно. Г. Н. Флеров с сотрудниками исследовал свинцовые стекла
древней витрины XIV века, лейденскую банку XIX века, вазу из свинцового
хрусталя XVIII века. Сначала несколько следов самопроизвольного деления
указали на экасвинец-- 114-й элемент. Однако, когда дубнинские ученые
повторили свои измерения с высокочувствительным детектором нейтронов в самом
глубоком соляном руднике Советского Союза, то положительного результата не
получили. На такую глубину не могло проникнуть космическое излучение,
которое, по-видимому, вызвало наблюдавшийся эффект.
В 1977 году профессор Флеров предположил, что он наконец обнаружил
"сигналы нового трансурана" при исследовании глубинных термальных вод
полуострова Челекен в Каспийском море. Однако число зарегистрированных
случаев было слишком мало для однозначного отнесения. Через год группа
Флерова зарегистрировала уже 150 спонтанных делений в месяц. Эти данные
получены при работе с ионообменником, заполненным неизвестным трансураном из
термальных вод. Флеров оценил период полураспада присутствовавшего элемента,
который он еще не смог выделить, миллиардами лет.
Другие исследователи пошли иными путями. Профессор Фаулер и его
сотрудники из Бристольского университета предприняли эксперименты с
аэростатами на большой высоте. С помощью детекторов малых количеств ядер
были выявлены многочисленные участки с зарядами ядер, превышающими 92.
Английские исследователи считали, что один из следов указывает даже на
элементы 102...108. Позднее они внесли поправку: неизвестный элемент имеет
порядковый номер 96 (кюрий).
Как же попадают эти сверхтяжелые частички в стратосферу земного шара?
До настоящего времени выдвинуто несколько теорий. Согласно им, тяжелые атомы
должны возникать при взрывах сверхновых звезд либо при других
астрофизических процессах и достигать Земли в виде космического излучения
или пыли -- но только через 1000 -- 1 000 000 лет. Эти космические осадки в
настоящее время ищут как в атмосфере, так и в глубинных морских отложениях.
Значит, сверхтяжелые элементы могут находиться в космическом излучении?
Правда, по оценке американских ученых, предпринявших в 1975 году эксперимент
"Скайлэб", такая гипотеза не подтвердилась. В космической лаборатории,
облетавшей Землю, установили детекторы, поглощающие тяжелые частички из
космоса; обнаружены были лишь треки известных элементов. Лунная пыль,
доставленная на Землю после первой посадки на Луну в 1969 году, не менее
тщательно обследовалась на присутствие сверхтяжелых элементов. Когда нашли
следы "долгоживущих" частичек до 0,025 мм, некоторые исследователи сочли,
что их можно приписать элементам 110-- 119.
Аналогичные результаты дали исследования аномального изотопного состава
благородного газа ксенона, содержащегося в различных образцах метеоритов.
Физики высказали мнение, что этот эффект можно объяснить лишь существованием
сверхтяжелых элементов. Советские ученые в Дубне, которые проанализировали
20 кг метеорита Алленде, упавшего в Мексике осенью 1969 года, в результате
трехмесячного наблюдения смогли обнаружить несколько спонтанных делений.
Однако после того, как было установлено, что "природный" плутоний-244,
некогда являвшийся составной частью нашей Солнечной системы, оставляет
совершенно сходные следы, интерпретацию стали проводить осторожнее.
Атомная масса 500. Где границы вещественного мира?
В июле 1976 года, как будто специально к 200-летнему юбилею США, мир
облетело сообщение, которое отметили как научную сенсацию высшего порядка.
Америка открыла элемент 126 с относительной атомной массой 350! Первый
представитель гипотетических суперактиноидов, к которым должны принадлежать
элементы от 122 до 153, был найден. Его назвали бисентениум -- в честь
200-летия независимости США. Открывателями, прославившими себя, оказались
Роберт Джентри из Национальной лаборатории в Ок-Ридже и несколько
сотрудников из Калифорнийского государственного университета.
Многие годы Джентри занимался "радиоактивными нимбами", присутствующими
в различных минералах и называемыми также ореолами. Последние образуются в
результате альфа-излучения радиоактивных атомов, которое разрушает
кристаллическую решетку. Можно измерить размеры этих нимбов под микроскопом
и затем оценить энергию альфа-частиц. Еще в 1935--1940 годах австрийский
физик Иозеф Шинтльмейстер бился над разрешением той же проблемы. Он был
одержим идеей о наличии неизвестных элементов в минералах типа слюды. Его
особенно интересовали плеохроические нимбы, которые возникают вследствие
радиоактивных включений. Некоторые из нимбов были так велики, что должны
были вызываться альфа-излучением с необычно большой энергией. Позднее
профессор Шинтльмейстер работал в Россельдорфе и продолжал поиски, хотя и
безрезультатные, этих загадочных альфа-излучений. До последнего времени он
неустанно обменивался научными мыслями с профессором Флеровым.
Неизвестно, знал ли Джентри о работах Шинтльмейстера. Однако он шел по
тому же следу. В биотите с Мадагаскара Джентри обнаружил неожиданно большие
нимбы -- гигантские ореолы. Они должны были возникнуть под действием
альфа-частиц с энергией 14 МэВ. Однако среди известных нуклидов нельзя
обнаружить альфа-излучателей такого рода. Джентри и его сотрудники считали,
что такие гигантские нимбы можно объяснить распадом сверхтяжелого элемента.
Американцы сняли рентгеновские спектры предполагаемых сверхтяжелых
элементов индуцированием потоком протонов и приписали найденные значения
элементу 126, а также элементам 116, 124 и 127. Такая смелость задела за
живое ученых всего мира. Несколько исследовательских групп устремились
перепроверять ошеломляющие данные Джентри. Особенно велики в этом заслуги
сотрудников Института ядерной физики имени Макса Планка (Гейдельберг) под
руководством профессора Повха. В конце 1976 года последовало разочарование.
Повх хладнокровно объявил, что американцы стали жертвой как эффекта
загрязнений, так и неправильной интерпретации данных рентгеноспектроскопии.
Все рентгеновские полосы, отнесенные к сверхтяжелым элементам, на самом деле
происходят от обычных элементов, главным образом от церия. "На такие ошибки
надо смотреть философски,-- утешал Повх.-- Тот, кто неустанно всю свою жизнь
ищет какую-либо вещь, вдруг верит в то, что он ее действительно нашел. Со
мной как-то произошло то же самое".
С тяжелым сердцем начал Джентри сам развенчивать свое "открытие". В
конце концов он подверг бомбардировке в синхротроне тот же кусок биотита, в
котором он в свое время якобы находил бисентениум. Таким путем Джентри хотел
получить рентгеновские линии, отнесение которых не подвергалось бы критике
коллег. На этот раз Джентри уже не нашел никаких указаний на сверхтяжелые
элементы с порядковыми номерами от 105 до 129. Не нашел и тогда, когда
повысил чувствительность определений до 5*10[8] атомов в каждом
гигантском ореоле.
Островок устойчивости, неясно возникший было на горизонте, оказался на
этот раз миражем. Как и 40 лет назад, нашли лишь... ложные трансураны.
Однако для пессимизма пока повода не было. Имеется сообщение 1977 года:
исследователи Института ядерной физики в Орсей (Франция) нашли неизвестную
естественную радиоактивность в чистом гафнии и в гафниево-циркониевых
минералах. Источником ее должен быть новый сверхтяжелый элемент, который
может содержаться в количестве 10[-13] г в 1 г исходного
вещества. Естественно, французы пока не высказываются, какой именно это
трансуран и как его называть.
Следовательно, несмотря на все неудачи, поиски неизвестных сверхтяжелых
элементов продолжаются. Наука неизменно стремится продвинуться до крайних
пределов периодической системы. Если не удастся найти сверхтяжелые элементы
на Земле или в Космосе, тогда надо хотя бы получить их искусственно, а путь
для этого, известен: превращение других элементов.
Еще в 1971 году английские ученые сочли, что они первыми вступили на
легендарный "островок устойчивости". После анализа вольфрама, 56-го
элемента, который в течение одного года подвергался бомбардировке притонами
с огромной энергией в 24 ГэВ в синхротроне CERN, они обнаружили спонтанно
распадающийся тяжелый трансуран -- экартуть, элемент 112. По мнению
первооткрывателей, атомы вольфрама приобрели столь высокую энергию, что был
превзойден порог кулоновского взаимодействия: два ядра вольфрама слились с
образованием нового атомного ядра -- элемента 112. Потребовалось некоторое
время, чтобы обнаружить ошибку. Вновь виновна в ней была грязь. Таинственная
самопроизвольно распадающаяся примесь являлась калифорнием -- 98-м, а не
112-м элементом. До сих пор является загадкой, откуда "вылезло" это
загрязнение.
Несмотря на такие превратности судьбы, ученые упорно стремятся
соединить друг с другом ядра тяжелых атомов для получения сверхтяжелых
элементов. Считается, что следует, соединив последовательно ускорители
тяжелых ионов, достичь такой мощности, чтобы даже ядра урана смогли
преодолеть порог кулоновского отталкивания и слиться друг с другом. Из двух
атомов изотопа урана [238]U должен образоваться
[476]Х, то есть 184-й элемент с относительной атомной массой,
близкой к 500. Конечно, было бы уже хорошо, если при такой "реакции с
избытком" можно было получить хотя бы устойчивые элементы 164 или 114.
Элемент со злополучной атомной массой 500 уже однажды был описан в
"литературе": черный, блестящий ком материи размером с яблоко весил центнер.
Он состоял из металла с атомной массой 500. Этот сверхтяжелый металл был
выплавлен в специальных автоклавах при давлении 50 000 МПа и температуре 1
000 000 °С путем ступенчатого присоединения к урану гелия. Этого вещества,
взятого на кончике ножа, было достаточно, чтобы электростанция работала в
течение нескольких месяцев... во всяком случае писатель Доминик в 1935 году
так описывает синтез и свойства элемента с "атомной массой 500" в романе с
тем же названием. С тех пор такие представления бытуют в головах читателей
фантастики. Сегодня ставится тот же вопрос: возможен ли синтез элемента с
такой атомной массой или при этом мы выскочим за пределы периодической
системы?
В наше время уже можно осуществить опыты по ускорению атомов урана до
необходимого порога энергии для термоядерного синтеза; для этого можно было
бы использовать мощнейшие ускорители тяжелых ионов--UNILAC в Дармштадте,
У-400 в Дубне, Super-HILAC в Беркли. Может показаться, что реализация
синтеза элемента с массовым числом 500 существенно приблизилась. Когда в
1977 году впервые на UNILAC'e ядра урана с энергией 1785 МэВ были направлены
навстречу друг другу, то ожидались истинные чудеса. Физики напряженно
склонились над первыми ядерными треками, появившимися на детекторах. Начало
вырисовываться оригинальное явление: деление урана на четыре обломка. Оба
ядра урана раскололись на две части. Однако сверхтяжелых элементов нельзя
было обнаружить.
Граница синтеза элементов оценивается где-то около 200-го элемента.
Здесь в будущем должна закончиться периодическая система. Элементы с более
высоким порядковым номером не должны существовать: большое число протонов в
ядре мгновенно привело бы к захвату ближайших к ядру элементов и в
заключение к гибели всего атома. В результате могут образовываться ядра с
меньшим зарядом, а часть атома превратилась бы в энергию излучения.
Мы знаем, что фермий-257 является самым тяжелым изотопом, который
существует в весомых количествах. Он имеет удобный для практики период
полураспада, равный почти ста дням. Этот изотоп мог бы служить в качестве
мишени. Поэтому при использовании сильно разогнанных ионов фермия-257,
теоретически возможен процесс термоядерного синтеза, приводящий к элементу
200, относительная атомная масса которого равна 500:
[257]Fm + [257]Fm = [500]X + 14n
Для 200-го элемента уже есть имя: бинилнилий. Международный союз
теоретической и прикладной химии (ИЮПАК.) давно пытается воодушевить ученых
на единообразное наименование химических элементов. Тогда не будет тех
спорных вопросов, которые появились в последнее время. Начиная с элемента
100 наименования складываются из готовых слогов: "нил" для нуля, "ун" для
единицы, "би" для двух и суффикс. Тогда элемент 114 назывался бы просто
унунквадий, а элемент 200 -- бинилнилий. И никто бы больше не спорил, должен
ли элемент 105 называться ханием или нильсборием. Его название уннилпентий.
Однако, к огорчению ИЮПАК, еще никто из ученых ни в Дубне, ни в Беркли не
последовал этому предложению. Значит, шансы на введение в химию такого
"дремучего" языка малы. По мнению Сиборга, ему приятнее сказать "элемент
114", чем "унунквадий", на котором язык сломаешь...
Однако, будет ли когда-нибудь в достаточном количестве фермий-257 --
основа для получения бинилнилия, то есть, по-старому, элемента 200? Это
вполне оправданный вопрос. Ведь из 1 т плутония в мощном реакторе образуется
максимально 1 мкг фермия-257, и то после 10-летней бомбардировки нейтронами!
Если не удастся получить большие количества фермия другими путями, то
придется отказаться от столь заманчивого синтеза элемента с относительной
атомной массой 500.
Больше надежд сулят опыты по синтезу элементов, лежащих близко к
островку устойчивости. Так, взаимодействие плутония-244 с дважды магическим
кальцием 48 должно было бы привести к элементу 114:
[244]Pu + [48]Са = [290]X + 2n
Правда, здесь не получится сверхустойчивого изотопа-298 элемента 114.
Однако специалисты ожидают, что изотоп с массовым числом 290 будет также
иметь довольно большую продолжительность жизни. Сейчас соответствующие опыты
планируются как в Дубне, так и в Беркли. Решающим препятствием до сих пор
являлась скудость запасов исходных веществ: в природном кальции присутствует
лишь 0,18 % кальция-48, и он должен длительно обогащаться. В настоящее время
мировой запас кальция-48 составляет всего несколько граммов. Плутоний-244
тоже необходимо сначала "инкубировать" в реакторе в достаточном количестве.
Однако при всем оптимизме физикам ясно: даже с помощью самых мощный
ускорителей тяжелых ионов никогда нельзя будет получить весомые количества
сверхтяжелых элементов... Но это не останавливает ученых. Им необходимо
знать, куда ведет дорога "за ближайшим уличным поворотом". Действительно,
куда же ведет этот путь?
Если повнимательнее присмотреться к истории открытия элементов, богатой
ошибками и разочарованиями, то, возможно, появятся сомнения в успехе такой
тяжкой погони за "сверхтяжелыми" элементами: не будут ли вновь открыты
ложные трансураны? Быть может, он вовсе и не существует, этот далекий
"островок устойчивости"? Отто Хан неоднократно подчеркивал, что он постоянно
искал не то, что находил. Пусть же ученые в своем путешествии по "морю
неустойчивости" откроют в конце концов нечто сногсшибательное! По этому
поводу Сиборг заявил: "Если обнаружится, что теория верна, тогда для
исследователя откроется совершенно новый мир химии и физики, в сравнении с
которым все предыдущие попытки покажутся бесцветными".
Искусственные элементы в исследовании Космоса
Для чего нужны трансураны, а также другие искусственные элементы? Стоят
ли они действительно таких огромных затрат для их исследования и
производства?
Технеций (Тс), первый искусственный элемент в периодической системе,
завоевал широкие области применения. В настоящее время его получают в
килограммовых количествах из радиоактивных отходов атомной промышленности.
Когда в Соединенных Штатах было начато коммерческое производство и
использование технеция, то цена за 1 г за несколько лет упала с 17 000 до 90
долларов. Теперь технеций применяют в медицине как ядерное фармацевтическое
средство для радиографии различных органов с целью проверки их
функциональной деятельности. Таким путем можно диагностировать также раковые
заболевания. Вводимый для этого изотоп [99]Тс, вследствие малого
периода полураспада, равного 6 ч, приходится изготовлять в изотопном
молибденовом генераторе непосредственно перед использованием.
Поговаривают о технеции как о возможном катализаторе для химической
промышленности. Однако самые большие его достоинства заключаются в защите от
коррозии. Пертехнаты являются мощными ингибиторами коррозии. Такое открытие
сделал американец Картледж в начале 1955 года. Он обнаружил, что добавка уже
0,00005 % технеция прекращает коррозию стали и железа в воде.
Прометий (Pm), второй искусственный элемент, также приобрел значение в
технике. Бета-излучатель прометий-147 в качестве заменителя радия применяют
для изготовления фосфоресцирующих веществ, которые используют, например, для
контрольных приборов на борту самолетов. Прометий нужен также для измерения
радиоактивным методом толщины фольги и листового стекла. Однако наиболее
важным применением этого элемента является его способность быть источником
ядерной энергии: он, как все радиоактивные бета-излучающие элементы,
ионизирует пограничный слой полупроводников, в результате чего возникает
ток. Такое явление называют бетавольтэффектом. Оксид прометия-147 массой в
24 г, запрессованный под давлением в платиновую капсулу, дает энергию в 8
Вт. В настоящее время изготовляют минибатареи из прометия-147 размером не
более двухкопеечной монеты. Длительность их работы ограничена лишь периодом
полураспада изотопа. Последний составляет два с половиной года.
Альфа-излучающие трансураны по своей природе способны выделять
значительную тепловую энергию. Поэтому препараты кюрия сильно фосфоресцируют
и такого термического свечения достаточно для того, чтобы их можно было
сфотографировать в темноте в собственном излучении.
Водные растворы, содержащие несколько миллиграммов соли кюрия на литр,
закипают сами собой. Они выглядят, как искрящееся шампанское,--
завораживающее зрелище. При работе такие растворы необходимо непрерывно
охлаждать. Таблетки из нескольких граммов оксида кюрия постоянно раскалены,
температура их поверхности выше 1200 °С!
Когда в 1947 году впервые получили кюрий в "значительных" количествах,
этот мировой запас состоял из крошечной пылинки гидроксида кюрия, едва
видимой невооруженным глазом. В настоящее время кюрий получают в
килограммовых количествах. По своей удельной теплотворной способности,
равной 123 Вт/г, кюрий-242 с периодом полураспада 162 дня превосходит все
другие трансураны. Кюрий-244 выделяет лишь 2,9 Вт/г, но зато обладает
большей продолжительностью жизни (период полураспада 17,6 лет).
Плутоний-238, выделяющий энергию в 0,46 Вт/г, имеет почтенный период
полураспада в 88 лет.
Из этих альфа-излучателей с помощью термоэлементов получают ток. При
установке таких термоионных изотопных батарей целиком руководствуются их
назначением. Если желательны долгоживущие источники энергии, например для
измерительных или запускаемых в космос приборов, для снабжения током
светящихся буев и автоматических метеостанций либо для обогрева одежды
водолазов или космонавтов, то предпочтителен кюрий-244 или плутоний-238.
Если же, напротив, требуется на короткое время выработка больших количеств
энергии, то выгоднее батарея из кюрия-242.
Обычно атомные батареи применяют повсеместно в тех случаях, где эти
носители энергии могут проявить свои поразительные свойства: они занимают
минимальный объем, не нуждаются в уходе и надежны даже в экстремальных
условиях. Предпочтительнее всего использовать их в космических путешествиях.
Когда 4 октября 1957 года в СССР был выведен на орбиту первый искусственный
спутник Земли, то его химические батареи могли давать энергию в течение 23-х
дней. После этого мощность их была исчерпана. Напротив, батареи из
радиоактивных нуклидов имеют совершенно иные резервы мощности.
В 1961 году такая батарея типа SNAP (System for nuclear auxiliar
Power[72]) впервые установлена США на борту навигационного
спутника "Транзит". Поставщиком энергии служил плутоний-238, теплота
которого термоэлектрически превращалась в ток. С тех пор в космических
полетах не раз использовали атомные батареи, Советский Союз -- в спутниках
типа "Космос". В США, например, метеоспутник "Нимбус", который вращается
вокруг Земли с мая 1968 года, имеет батарею на плутоний-238 мощностью 60 Вт.
Американский лунный зонд "Сарвейор", который в 1966 году передал по радио на
Землю первый химический анализ лунного грунта, обладал энергетической
установкой в 20 Вт, питаемой 7,5 г кюрия-242.
Известной стала мини-электростанция SNAP 27, мощность которой (73 Вт)
обеспечивается 4,3 кг плутония-238. Ее размеры составляют 45 X 40 см. 12
ноября 1969 года астронавты "Аполлона 12" установили SNAP 27 на Луне. Из
соображений безопасности на время космического полета американские
космонавты закрепили плутониевый стержень, имеющий температуру 700 °С, на
наружной стенке лунного корабля. Только после посадки они поместили его
внутрь генератора.
SNAP 27 сразу стали давать электрический ток, а позднее -- снабжать
энергией оставленную на Луне измерительную аппаратуру.
Еще раньше, при первой посадке на Луну, американцы использовали
источники энергии из плутония-238. Такие батареи помещали в измерительные
приборы, и они гарантировали их безупречную работу, даже при тех резких
перепадах температур, которые существуют на спутнике нашей Земли. В полетах
космических кораблей "Аполлон" источник энергии из 570 г плутония-238
обеспечивал регенерацию питьевой воды. С его помощью американские астронавты
могли ежедневно регенерировать 8 л воды. Исследовательский корабль
"Луноход", спущенный на поверхность Луны Советским Союзом в ноябре 1970
года, был обеспечен радиоактивными изотопами для регулировки температуры.
Источники энергии, снабженные долгоживущими изотопами, особенно
необходимы для космических зондов, находящихся в "дальних странствиях" к
удаленным планетам. Поэтому американские зонды "Викинг", которые были
высажены на Марс в июле и сентябре 1976 года с целью поисков там разумной
жизни, имели на борту два радиоизотопных генератора для обеспечения энергией
спускаемого аппарата. Космические станции вблизи Земли, такие, как "Салют"
(СССР) и "Скайлэб" (США), получают энергию от солнечных батарей, питаемых
энергией Солнца. Однако зонды для Юпитера нельзя оснащать солнечными
батареями. Излучения Солнца, которое получает зонд вблизи далекого Юпитера,
совершенно недостаточно для обеспечения прибора энергией. Кроме того, при
космическом перелете Земля -- Юпитер требуется преодолеть огромные
межпланетные расстояния при продолжительности полета от 600 до 700 дней. Для
таких космических экспедиций основой удачи является надежность
энергетических установок.
Поэтому американские зонды планеты Юпитер -- "Пионер 10", который
стартовал в феврале 1972 года, а в декабре 1973 года достиг наибольшего
приближения к Юпитеру, а также его преемник "Пионер II"--были оснащены
четырьмя мощными батареями с плутонием-238, помещенными на концах
кронштейнов длиной в 27 м. В 1987 году "Пионер 10" пролетит мимо самой
удаленной от Земли планеты -- Плутона, а затем это первое земное космическое
тело покинет нашу Солнечную систему, имея на борту химический элемент,
искусственно полученный на Земле.
Перспективно применение искусственных элементов для снабжения энергией
сердечных регуляторов. От таких батарей требуется, чтобы они периодически
посылали сердечной мышце электрические импульсы. Применявшиеся до сих пор
химические батареи неизмеримо больше атомных по размерам и работают только
два-три года. Продолжительность работы атомных сердечных регуляторов с
плутонием-238 оценивают не менее чем в десять лет. Следовательно, при
неблагоприятных обстоятельствах пациент с больным сердцем должен
подвергаться хирургическому вмешательству каждые десять лет. К атомным
регуляторам предъявляются особенно жесткие требования по технике
безопасности, чтобы ни при каких обстоятельствах чрезвычайно токсичный
плутоний не смог вырваться наружу. В 1970 году французские врачи
имплантировали двум людям сердечные регуляторы, которые весили всего по 40
г. Требуемую мощность в 200 мкВт обеспечивали 150 мг плутония-238. С тех пор
эти регуляторы поддерживают сердечную деятельность обоих пациентов. Столь
убедительный успех создал целую медицинскую школу. Медики имплантируют
сердечные регуляторы из плутония-238 или прометия-247, в последние годы
также в Советском Союзе и Польше.
Изотоп плутония [238]Pu оправдал себя и для других
медицинских целей. Он служит источником энергии для "искусственного сердца"
-- насоса для крови, спасителя жизни при остановке кровообращения. Элемент
плутоний все больше делается похожим на двуликого Януса -- он в равной мере
может внушать как надежды, так и страх.
Калифорний: в поисках наркотиков и золота
В 1950 году трансурановый элемент калифорний (Cf) появился на свет в
количестве нескольких атомов. В настоящее время планируется и осуществляется
"производственная программа" для получения его миллиграммовых количеств.
Мировой запас калифорния составляет несколько граммов, вероятно, никак не
более 5 г. Калифорний невероятно дорог. Один грамм его стоит около 10
миллионов долларов. Какие же свойства, несмотря на это, делают этот изотоп
столь необходимым?
Калифорний-252 имеет период полураспада 2,6 года. При этом
самопроизвольно делится 3 % всех атомов и при каждом делении выделяется
четыре нейтрона. Вот именно такая нейтронная эмиссия и делает калифорний-252
столь интересным, ибо 1 г в секунду выделяет 2,4 биллиарда
(10[12]) нейтронов. Это соответствует нейтронному потоку среднего
ядерного реактора! Если бы такое нейтронное излучение захотели получить
классическим путем из радиево-бериллиевого источника, то для этого
потребовалось бы 200 кг радия. Столь огромного запаса радия вообще не
существует на Земле. Даже такое невидимое глазом количество, как 1 мкг
калифорния-252, дает более 2 миллионов нейтронов в секунду. Поэтому
калифорний-252 в последнее время используют в медицине в качестве точечного
источника нейтронов с большой плотностью потока для локальной обработки
злокачественных опухолей.
Во многих случаях калифорний может теперь заменить атомный реактор,
например для таких специальных аналитических исследований, как нейтронная
радиография или активационный анализ. С помощью нейтронной радиографии
просвечиваются детали самолетов, части реакторов, изделия самого различного
профиля. Повреждения, которые обычно невозможно обнаружить, теперь легко
находят. Для этой цели в СССР и США разработана транспортабельная нейтронная
камера с калифорнием-252 в качестве источника излучения. Она позволяет вести
работу вне зависимости от стационарного атомного реактора. В борьбе с
преступностью в США такая нейтронная камера показала свой превосходный
"нюх". Таблетки ЛСД и марихуана, спрятанные в патронных гильзах, были сразу
обнаружены. С помощью рентгеновских лучей контрабандные наркотики найти не
удавалось.
Более распространено использование калифорния в нейтронно-активационном
анализе. Под этим имеется в виду высокочувствительный метод анализа,
пригодный в особенности для определения следов элементов. Исследуемые
вещества подвергают облучению потоком нейтронов, в результате чего
образуются искусственные радиоактивные изотопы. Интенсивность их излучения
является мерой содержания составных частей примесей. При (n, ()-реакциях
можно с помощью гамма-спектроскопии высокой точности изящным методом
измерить интенсивность гамма-излучения, специфическую для каждого нуклида, а
по интенсивности найти содержание определяемого элемента.
В настоящее время общепринято активировать материал пробы в атомном
реакторе. Однако все более предпочтительными становятся небольшие переносные
источники нейтронов. Они позволяют проводить нейтронно-активационный анализ
на месте. Убедительным примером является изучение состава поверхности Луны и
удаленных от Земли планет. При поисках рудных месторождений, находящихся в
недоступных местах на Земле и на дне моря, применяют точечные источники
нейтронов. Для разведывания месторождений нефти используют зонды буровых
скважин с калифорнием-252.
В активационном анализе чувствительность чрезвычайно высока. Могут быть
обнаружены ничтожные количества -- 10[-10]-- 10[-13] г
исследуемого вещества. Для некоторых элементов чувствительность еще выше.
Например, с помощью активационного анализа удается обнаружить даже
10[-17] г, то есть около 250 00 атомов.
Умер ли Наполеон 1 в ссылке естественной смертью? На этот вопрос,
неоднократно подвергавшийся обсуждению, был получен однозначный ответ лишь
140 лет спустя. В качестве "вещественного доказательства" послужила прядь
волос французского императора, которая была срезана у него 5 мая 1821 года
на острове св. Елены, через день после его смерти. Она хранилась из
поколения в поколение несколькими почитателями в качестве драгоценного
сувенира. Судебные медики обнаружили, что император стал жертвой отравления.
С помощью активационного анализа было установлено, что в волосах Наполеона
содержится мышьяка в 13 раз больше нормы. Из различного содержания мышьяка
на отдельных участках роста волос можно было установить даже время, когда
начали ему подмешивать в пищу яд.
В настоящее время уже не является загадкой происхождение античных
мраморных статуй, поскольку стало известно, что для различных древних
мраморных каменоломен характерно присутствие определенных примесных
элементов. Исследования красящих пигментов картин с помощью активационного
анализа оказались весьма ценными для их датирования. Следы посторонних
примесей в свинцовых белилах -- весьма распространенной краске -- совершенно
характерно изменяются с течением времени. Сходное поведение обнаружено также
для других художественных красок. С тех пор, как появился
нейтронно-активационный анализ, исчезли все возможности для подделки картин
старых мастеров.
Неоценимое преимущество этого метода проявляется в особенности при
исследовании ценных старинных произведений искусства, ибо испытание не
связано абсолютно ни с каким разрушением. При других современных методах
анализа, как, например, рентгенофлюоресцентном или спектральном, неизбежно
хотя бы поверхностное повреждение изучаемого объекта.
Золото и серебро также можно прекрасно определять путем активационного
анализа, причем как в микро-, так и в макроколичествах. Знаменитый медальон
Венцеля Зейлера остался бы в настоящее время неповрежденным, если бы его
тайна была раскрыта с помощью этого метода. Активационный анализ,
предназначенный прежде всего для следов элементов, был применен и для
макроскопических определений. Используя небольшие потоки нейтронов
[10[3] нейтронов/(см[2]*с) вместо обычных 10[9
]-- 10[14]], можно определить основные составные части
сплава, например содержание золота и серебра в золотой монете. Хорошую
службу оказывают здесь источники нейтронов на основе калифорния-252.
Таким образом, в настоящее время вполне возможно определить состав или
же подлинность исторических монет из благородных металлов без их разрушения.
Теперь можно было бы изобличить даже фальшивомонетчиков древности. Когда
папа Григорий IX отлучил от церкви римского императора и короля Сицилии
Фридриха II, он кроме всего прочего обвинил его в подделке монет. Это легко
было обнаружить для серебряных динаров, пущенных в обращение Фридрихом II,
ибо они имели лишь посеребренную поверхность. А как же обстояло дело с
известными золотыми августалами (которые приказал чеканить Фридрих) --
монетами большой нумизматической ценности? Обладали ли они предписанным
содержанием благородного металла в 20,5 карата, что составляло 85,5 %
золота? На этот вопрос долгое время нельзя было ответить, ибо никто не
решался пожертвовать немногими коллекционными монетами для традиционного
анализа. Нейтронная активация без повреждения монет дала доказательство
того, что августалы XIII века соответствовали требуемому составу, то есть
являлись подлинными.
В прежние времена выпуск фальшивых монет был строго наказуем. В 1124
году английский король Генрих I приказал жестоко изувечить сто мастеров
монетного двора по подозрению в подмене серебра в монетах на олово. В
настоящее время, с 1971 года, эти мастера должны считаться
реабилитированными, хотя и слишком поздно: активационный анализ безупречно
доказал, что серебряные монеты, вызывавшие подозрения, содержат требуемые
количества металла.
Нейтронно-активационный анализ помогает геологам при поисках
месторождений золота и серебра. В Советском Союзе в Ташкентском институте
ядерной физики разработаны методы гамма-спектроскопического определения
содержания золота в скальных породах при помощи бурового зонда, снабженного
Cf-источником. Благородные металлы, заключенные в руде или в горных породах,
активируются нейтронами. При этом образуются радиоактивные изотопы серебра
или золота, которые можно легко различить, зная их период полураспада, а
также расположение линий их гамма-спектров. Интенсивность полос дает
сведения о содержании металла: в природных породах можно таким путем
определить 10[-9] % золота и серебра. Не остается незамеченной
даже малейшая пылинка золота.
Проблемы производства трансуранов
Из числа трансуранов особый интерес представляют плутоний, америций,
кюрий и калифорний. Как же обстоит дело с их получением? Настолько ли
доступны эти искусственные элементы, чтобы можно было рекомендовать их
использование?
Когда в 1966 году американское космическое ведомство запустило лунный
зонд "Сарвейор", имевший на своем борту атомную энергетическую установку с
7,5 г кюрия, то лишь посвященные знали, как трудно было получить такое
количество кюрия. Пришлось в течение четырех месяцев в мощном реакторе
бомбардировать нейтронами 77 г америция-241 стоимостью в 20 000 долларов, а
затем перерабатывать полученные продукты.
Еще более дорогостоящими оказались опыты американцев по получению
транскюриевых элементов, прежде всего желанного калифорния-252. Для его
ступенчатого синтеза надо, чтобы каждый атом плутония, полученный в
реакторе, захватил суммарно 13 нейтронов. Однако при этом образуется
множество других делящихся нуклидов, так что максимальный выход
калифорния-252 составляет 0,05 %. Следовательно, из 1 кг плутония после
многолетнего облучения в мощном реакторе можно получить в лучшем случае 0,5
г калифорния-252. Однако для поддержания мощности такого специального
реактора требуется ежемесячно менять дорогостоящие стержни из урана-235.
Этим объясняется колоссальная цена на 1 г калифорния: 10 миллионов долларов.
В 1972 году США располагали этим одним граммом. Для того, чтобы его
можно было перевозить, потребовался специальный резервуар. Такая "упаковка"
выглядела необычно: диаметр ее около 3 м, высота 4 м и масса 50 т. Вот в
таком "бронированном сейфе" с многослойными стенками из парафина, свинца,
бетона и стали и хранится сокровище из калифорния стоимостью в 10 миллионов
долларов. Однако все это устройство -- не для защиты от воров, а для защиты
от радиации. Без такой "упаковки" этот грамм калифорния стал бы смертельно
опасным из-за испускания нейтронов и вызвал бы повсюду радиоактивность,
индуцированную нейтронами.
Из обзора за 1971 год следует, что с июля 1969 года по июль 1971 года в
обоих мощных реакторах -- в Ок-Ридже и Брукхэвене (США) -- получены
следующие количества трансуранов: 50 г кюрия-244; 54 мг калифорния-252; 0,4
мг эйнштейния-253; 5*10[8] атомов фермия-257 (невесомое
количество).
Неудивительно, что при таких скудных выходах ведутся поиски других
методов производства трансуранов -- более быстрых, дешевых, выдающих продукт
в больших количествах. Американцы, искони обладающие понятием "большого
бизнеса", создали грандиозный план: ожидать 5 или 10 лет получения 1 г
калифорния они не в состоянии; они хотели одним махом получить 10 г... с
помощью взрыва атомной бомбы!
После некоторых предварительных опытов в июле 1969 года американцы
решились на грандиозный эксперимент, получивший кодовое название
"Хатч[73]". Место действия -- испытательный полигон департамента
атомной энергии США для подземных испытаний ядерного оружия в Неваде.
Местность там в результате многочисленных ядерных взрывов выглядит как
лунный кратер. В эксперименте "Хатч" на 600-метровой глубине взорвалась
атомная бомба взрывной силы в 2000 кт тринитротолуола и образовала подземный
кратер. За 10[-7] с бомба выделила 4,5*10[25]
нейтронов/см[2] -- в 10 миллиардов раз больше, чем мощнейший
реактор. Когда спустя некоторое время снизилась радиоактивность, первые
партии рискнули на планерах высадиться на месте взрыва, чтобы подготовить
почву для бурения. Редкие трансураны находились в застывшем конгломерате
сплавившихся пород весом около 150 000 т. Чтобы их добыть, потребовались бы
"горнорудные" разработки. Это -- безнадежное предприятие, и потому
американцы ограничились буровой пробой в 100 г. Из нее они извлекли
10[10] атомов фермия-257 -- исходного вещества для получения
200-го элемента с относительной атомной массой 500. Это количество в сто раз
превышало полученное до сих пор в мощном реакторе. По приближенной оценке
всего при "Хатч"-взрыве было синтезировано 0,25 мг фермия-257, которые, увы,
как и те вожделенные 10 г калифорния, оказались рассеянными в твердой
породе. Они и сегодня еще находятся там, если только не распались.
Эксперимент "Хатч", а также другие опытные взрывы натолкнули
американских специалистов в 1972 году на далеко идущие планы. При помощи
двух термоядерных взрывов, следующих в кратчайшее время один за другим,
можно было бы перескочить через "барьер синтеза" фермия-258. Тогда можно
было бы синтезировать высшие трансураны прежде, чем вновь распадется этот
весьма короткоживущий промежуточный продукт. Вторая нейтронная молния должна
была бы также перескочить через естественное самопроизвольное деление других
трансуранов. С помощью такого "двойного выстрела" надеялись получить весомые
количества сверхтяжелых элементов, находящихся вблизи порядкового числа 114.
Но и до сих пор эти "процессы синтеза" остаются лишь теорией. Ведь между
СССР и США существуют весьма важные политические соглашения об ограничении
подземных ядерных испытаний. Несмотря на это, американцы пытаются выдвинуть
на первый план научные перспективы такого двойного взрыва: поскольку реакции
между тяжелыми ионами не привели к цели, это -- единственная возможность
достигнуть островка устойчивости.
Радиоактивные "отходы" в настоящее время являются главным источником
для получения синтетических элементов. Из остаточных растворов после
переработки отработанного ядерного горючего получают технеций и прометий, а
также искусственные трансураны. На долю нептуния, америция и кюрия
приходятся соответственно количества 500, 100 и 20 г на тонну выгорания.
Таким образом, регенерационные установки в атомной промышленности служат не
только для необходимого устранения опаснейших продуктов деления, но и для
получения ценных нуклидов.
Однако превращение элементов в атомном реакторе приводит не только к
радиоактивным нуклидам. Из отходов уранового реактора можно получить в
качестве продуктов деления высококачественные благородные металлы --
палладий и родий,-- которые и сегодня считаются весьма ценными. Американские
экономисты полагают, что их извлечение значительно рентабельнее; например, в
1980 году с радиоактивными отходами будет потеряно столько же родия, сколько
его получили из природных источников с помощью весьма трудоемких процессов.
Чем не алхимия: из урана получить палладий и родий, более ценные, чем
исходное вещество.
Реакторы на быстрых нейтронах, "плутоний на черном рынке"
Плутоний является тем искусственным элементом, который сотворяется
рукой человека в очень больших количествах, а именно тоннами. Это
производство нельзя ограничить. В любом атомном реакторе неизбежно
образуется плутоний. При выгорании 33 г урана-235 до 7 -- 8 г образуется
около 6 г 94-го элемента на каждый килограмм реакторного урана. В атомном
реакторе на 1000 МВт ежегодно синтезируется от 200 до 250 кг плутония-239.
Таким путем в Великобритании на 9-ти атомных станциях, работающих на
природном уране, получили до марта 1977 года 7,5 т плутония за счет
регенерации реакторных стержней.
Поэтому нетрудно, зная мощность реакторов, рассчитать мировой запас
"мирного" плутония, находящегося в виде реакторных стержней. В начале 1976
года он составлял, вероятно, около 60 т. К этому количеству следует добавить
официально не известный запас "плутониевого оружия", оцениваемый в 200--300
т. Это количество плутония, находящееся в атомном оружии, не столь уж
"секретно": его можно легко рассчитать из концентрации криптона-85 в
тропосфере нашей планеты, которая с 1959 года возрастает почти линейно. В
атомных реакторах, вырабатывающих плутониевое оружие, этот радиоактивный газ
образуется в количестве 0,3 % от общего выхода продуктов в процессе деления
и практически целиком ускользает в атмосферу.
Помимо такого "искусственного" плутония имеются, как мы знаем,
небольшие количества природного плутония. Все вместе заражает весь мир этим
элементом.
Сравнительно безобидными являются те случаи, когда спутники или атомные
батареи не достигали своей орбиты или сгорали в земной атмосфере. Это
произошло, например, с американским спутником из серии "Транзит", который
упал в 1964 году, имея на борту 1 кг плутония. Такие аварии в космических
путешествиях никогда нельзя полностью исключить, да они и не представляют
большой опасности. Плутоний-238, имеющий период полураспада 88 лет, к
счастью, гораздо скорее исчезнет с поверхности Земли, чем долгоживущий
плутоний-239 с периодом полураспада 24 100 лет. Так, почва Нагасаки еще и
сегодня содержит в десять раз большее количество плутония-239, чем в других
местах.
Озабоченность вызывают падения атомных бомбардировщиков США у Паломарес
и Туле в 1966 и 1968 годах. При этом из ядерного оружия выделились
значительные количества плутония-239. Еще больше загрязнили мир плутонием
все надземные испытания атомного оружия. До прекращения этих испытаний были
выброшены в атмосферу, по приближенной оценке, от 5 до 10 т плутония; 95 %
его в виде осадков заражают радиацией обширные районы земного шара. Следует
напомнить, что плутоний вследствие своей радиоактивности в 10[10]
раз токсичнее синильной кислоты. При работе с этим ядом необходимы
строжайшие меры предосторожности. Британский завод в Олдермастоне,
вырабатывающий плутоний, вынужден был закрыться в августе 1978 года в
результате протеста профсоюзов. У многих рабочих было обнаружено повышенное
содержание плутония в организме.
Как ни опасен и коварен элемент плутоний, все же он необходим для
обеспечения будущей энергетической потребности. С современной точки зрения
атомная энергия является единственным выходом для покрытия дефицита, который
возникнет в близком будущем вследствие растущего потребления энергии и
истощения природных ресурсов. Не может быть никакой дискуссии о том, должны
ли мы строить атомные электростанции или нет,-- говорил в 1977 году
президент Академии Наук СССР профессор А. П. Александров.-- У человечества
нет иного выхода; только с помощью атомных электростанций оно сможет
удовлетворить свои потребности в энергии на века. Этими словами советский
ученый однозначно обрисовал положение в мире.
Природные ресурсы урана-235 тоже исчерпаемы. Поэтому авторитетные
специалисты считают, что уран как носитель энергии будет перспективным лишь
в том случае, если для получения атомной энергии удастся использовать
неделящийся уран-238. то есть превратить его в делящийся плутоний. Уран-238
составляет более 99 % природного урана. Следовательно, необходимо
дополнительно получать делящийся плутоний, и именно в таких реакторах,
которые вырабатывают этого атомного горючего больше, чем используют сами: в
атомных реакторах на быстрых нейтронах. В этом типе реактора нейтроны не
тормозятся и предназначаются не для деления ядра, а для превращения элемента
урана-238 в плутоний-239. Такой процесс с быстрыми нейтронами поднимает
массу технических проблем и требований к технике безопасности, которые до
настоящего времени не полностью разрешены.
При разработке реакторов на быстрых нейтронах Советский Союз идет
впереди: в 1959 году в Обнинске был запущен опытный реактор. Первая в мире
опытная электростанция начала работать в 1973 году в г. Шевченко на
Каспийском море и с тех пор служит для опреснения морской воды. В Советском
Союзе и западных промышленных странах надеются, что к концу 80-х годов можно
будет пустить в ход реакторы на быстрых нейтронах для выработки энергии. По
прогнозам в 2000-м году треть всех атомных электростанций будет состоять из
реакторов на быстрых нейтронах. Связанное с этим расширение атомной
промышленности -- предположительно в 2000-м году общая мощность атомных
электростанций составит 3000 ГВт -- требует повышения ответственности
государств и действенного международного контроля. Ведь эти атомные
электростанции будут все же вырабатывать плутоний -- порядка 1000 т
ежегодно. Такого количества достаточно, чтобы изготовить 150 000 атомных
бомб, по силе равных хиросимской! Нельзя не считаться с опасностью того, что
в капиталистическом мире появится "плутониевая иерархия", что часть этого
огромного количества атомного взрывчатого вещества будет отчуждена, им
смогут торговать на черном рынке и нелегально изготовлять из него атомное
оружие.
Конечно, в социалистическом обществе не существует проблем такого рода.
Однако нам тоже приходится сосуществовать с плутонием, ибо мы не можем
отказаться от атомной энергии. Безусловно, нужно быть бдительными, учитывая
"свободное обращение" с ядерным горючим, принятое в капиталистических
странах. Оно может иметь тяжелые политические последствия. Уже много лет ФРГ
предпочитает торговать атомным сырьем с такими государствами, как Бразилия,
Южная Африка, которые не подписали договора об ограничении ядерного оружия.
С другой стороны, нельзя полностью исключить возможность того, что
террористы овладеют плутонием и начнут сами мастерить бомбы. По словам
одного американского специалиста, для этого нужны только плутоний и умение
читать и писать. Другие считают, что сборка атомной бомбы в гараже при
помощи тисков и молотка -- чистая фикция. Что же является правдой? Твердо
установлено, что в обычных атомных реакторах действительно образуется не
плутоний "чистый для бомбы", а смесь изотопов, содержащая от 60 до 70 %
делящегося плутония-239. Этот плутоний может служить для изготовления
атомных взрывчатых веществ. Испытание атомной бомбы в США показало, что
"дело пойдет" и с таким плутонием из атомных реакторов, который содержит
смесь изотопов. Об этом сообщил журнал "Кемикл энд инжиниринг ньюс" в
сентябре 1977 года, разрушив при этом некоторые иллюзии.
Поскольку критическая масса атомного взрывчатого вещества зависит также
от концентрации делящегося изотопа, она, вероятно, будет значительно выше
для смеси изотопов плутония, что, безусловно, является дополнительным
фактором безопасности. Для чистого плутония-239 критическая масса составляет
5,6 кг при максимальной скорости сближения докритических масс и оптимальном
отражении нейтронов.
Если мафии даже удалось бы смастерить атомное взрывчатое устройство из
"плутония с черного рынка", то сила взрыва его была бы намного слабее, чем
для обычных бомб. Однако такой атомный взрыв все равно был бы катастрофой,
вследствие возникшей радиоактивности и той паники, которую вызывает атомное
оружие любого калибра.
Переработка реакторного плутония с целью выделения чистого изотопа-239
связана с колоссальными техническими издержками. Поэтому не стоит
беспокоиться -- потенциальные "мастеровые" не смогут "дома" получить чистый
плутоний-239. Это относится также и к делящемуся плутонию-241 и
америцию-242. Плутоний-241 образуется в реакторе в небольших количествах и
имеет более низкую критическую массу, чем плутоний-239. Поэтому он
используется в атомных взрывных устройствах меньшего размера. Правда, такое
оружие является еще достаточно страшным. Вследствие малого периода
полураспада плутония-241 атомные гранаты на его основе приходится каждые два
года пускать в переработку и отделять образовавшийся америций-241. Этот
изотоп америция не является взрывчатым веществом. Напротив, америций-242
обладает наибольшим сечением захвата нейтронов для ядерного деления. Его
критическая масса составляет лишь 3,8 кг. К счастью, до сих пор не удается
получить значительных количеств этого изотопа. Так что и такой вариант не
доступен анархистам-кустарям.
А вот контрабанда искусственным элементом плутонием на
интернациональной арене никак не является фикцией. Такое злоупотребление
опаснее, чем кустарная бомба анархистов, столь часто обыгрываемая в
капиталистическом мире, ибо оно непосредственно подвергает опасности мир во
всем мире. Для того, чтобы обойти договор о запрещении атомного оружия, в
западном мире, с одобрения высших кругов, практикуются такие методы, которые
обычно описывают лишь в детективных романах.
В 1969 году грузовое судно ФРГ вышло в море из Антверпена, имея на
борту 200 т урана. Этот металл требовался итальянской фирме для производства
катализаторов для химической промышленности. На пути к порту назначения
Генуе судно с ураном бесследно "исчезло". Много месяцев спустя оно возникло
вновь в небольшом турецком порту... с другим грузом. Даже служба
безопасности ЕВРАТОМа не смогла ничего разведать о судьбе урана. Лишь девять
лет спустя один сотрудник ЦРУ проговорился об истинном положении дел: весь
груз -- 561 плотно закупоренная и запечатанная бочка -- был в свое время
"продан" Израилю. Этого урана им хватило бы, чтобы получить плутоний для
33-х небольших атомных бомб, ибо с 1963 года в Израиле работает реактор на
тяжелой воде.
Описанное происшествие не было единственным. По официальным данным за
последние годы в США столь же "таинственным" образом исчезли по меньшей мере
4 т обогащенного урана и плутония. Об этом сообщала международная пресса в
начале 1978 года. Как недавно доложило британское управление по атомной
энергии, на атомных электростанциях Великобритании недостает 100 кг плутония
-- это "нехватка" при инвентаризации, проведенной за 1971-- 1977 годы.
Предыстория и будущее элемента урана
Плутоний немыслим без урана. Однако в ближайшие десятилетия атомная
промышленность будет и дальше обходиться имеющимися запасами урана, не
создавая слишком больших резервов опасного плутония. Конечно, с большими
затратами связана необходимость каждый раз обогащать природный уран
изотопом-235, содержащимся в нем лишь в количестве 0,7 %. С другой стороны,
мы должны быть счастливы, что нашей планете 4,6 миллиардов лет, а не,
скажем, 10 миллиардов. Тогда на Земле не осталось бы урана-235! Вероятно,
деление ядра вообще не было бы открыто и никогда бы не осуществилось
промышленное использование атомной энергии.
А вот два миллиарда лет тому назад, к примеру, проблема запасов урана
была бы совсем не столь острой. Природный уран содержал тогда от 3 до 4 %
урана-235 -- такой концентрации достаточно для пуска атомного реактора без
предварительного обогащения. Природа даже позволила себе шутку: в то время
действительно существовал такой самопроизвольный реактор. В Окло, в
республике Габон, на западном побережье Африки, где сейчас ведутся
разработки мощных месторождений урана, два миллиарда лет тому назад
протекала доисторическая цепная реакция и замедлителем служила природная
вода. Реактор в Окло работал, по меньшей мере, 150 000 лет. Как это узнали?
Толчком для научного расследования по делу "Окло" был странный
результат анализа: уран из Окло содержит 0,7171 % урана-235 вместо обычных
0,7202 %. Недостающие 0,0031 % следует приписать выгоранию урана в
естественном реакторе. К такому выводу пришли только после исключения
множества других источников ошибок. Значит, природа уже два миллиарда лет
тому назад совершала то, чем человечество так гордится сегодня, а именно --
запуском самоподдерживающейся атомной цепной реакции с ураном!
В настоящее время не остается ничего иного, как удовлетвориться
имеющимся природным ураном-235. Мы должны попытаться найти другие
возможности, если не хотим резко перевести атомную промышленность на
плутоний. Возможной альтернативой был бы ториевый реактор, поскольку он дает
делящийся уран-233. Тория на Земле достаточно. Однако пока может помочь и
более полное использование имеющихся полезных ископаемых путем разработки
руд с меньшим содержанием урана. Кроме того, имеется еще совершенно
нетронутый запас -- около четырех миллиардов тонн урана: это уран из
Мирового океана.
Получать золото из морской воды -- от такого безнадежного предприятия в
1926 году отказался Фриц Габер, ввиду слишком малого его содержания. Для
урана положение несколько более благоприятно, поскольку его содержится в
среднем 3 мг в 1 м[3] морской воды. Несколько проектов ждут
своего оптимального экономического осуществления: некоторые микроорганизмы и
водоросли могут накапливать как благородные металлы, так и уран. Штаммы
водорослей, "пожирающих уран", ежедневно омываемые миллионом кубометров
воды, могли бы дать около 1 т урана в день. Специалисты полагают, что для
этого было бы достаточно фильтрующей клетки с поверхностью 100
м[2].
В Японии существуют планы создания к 1985--1990 годам первой
промышленной установки для получения урана из морской воды. К 1980 году
должны были войти в строй две пилотные установки. Для селективного
связывания урана японцы разработали синтетические ионообменники -- смесь
свежеосажденного гидроксида алюминия, гидроксида железа и активированного
угля. Для переноса гигантских количеств воды они собираются использовать
прилив и отлив, то есть заставить море естественным путем проходить через
ионообменник.
Такие процессы наверняка стали бы рентабельными, если одновременно
можно было бы получать из моря другие ценные элементы: фосфор, ванадий,
серебро и, прежде всего, золото! Золото также усваивается некоторыми
микроорганизмами и водорослями. Поэтому "биологические золотые прииски"
отнюдь не являются утопией. Вообще многие рудные месторождения возникали,
вероятно, в результате осаждения колоний микроорганизмов или водорослей. В
настоящее время науке известны искусственные ионообменники, с помощью
которых можно отделить золото, рассеянное в морской воде, от следов других
элементов и накопить его.
В 1974/75 годах советское исследовательское судно "Ломоносов" совершило
плавание по экваториальной Атлантике с тем, чтобы определить содержание
золота в воде океана и проверить экономичность получения его из морской
воды. Советские ученые получили большой разброс данных о содержании золота:
от 0,004 до 3,4 мг/м[3] в среднем 0,2 мг/м[3]. При
этом они установили, что в тропических водах содержание золота значительно
выше среднего. Анализы Фрица Габера подтвердились. Советские ученые пришли к
тем же выводам, что и Габер за 50 лет до этого: получение золота из моря в
настоящее время совершенно нерентабельно, хотя имеются морские зоны с
достаточно высокой концентрацией золота.
Солнце на Земле
Большой путь проделан человечеством от алхимии до первых удачных
превращений элементов и их искусственного получения. Как показывает открытие
деления атомного ядра, для деятелей науки возникли теперь серьезные
общественно-политические проблемы. Ученые, открывающие новые элементы,
синтезирующие, идентифицирующие и превращающие их, почувствовали особую
ответственность по отношению к обществу. С того времени, как были сброшены
атомные бомбы на японские города Хиросиму и Нагасаки, вопрос об
ответственности науки стоит особенно остро. Капиталистический мир, в
принципе, оставляет ученым мало возможностей для решения этой проблемы,
однако и там существовали и существуют лица, которые смело борются против
злоупотребления их научными результатами. Нередко приходилось им все же
вступать в конфликт со своей совестью.
К их числу принадлежит Отто Хан. Его обуревали сомнения, правильно ли
он поступил, когда открыл человечеству путь к получению атомной энергии.
Хан, открывший вместе с Штрасманом деление атомного ядра, считал, что
наилучшим выходом как для энергетики, так и для политики является ядерный
синтез гелия из легких элементов. В таком термоядерном реакторе не
образуется ни твердых радиоактивных продуктов распада, ни взрывчатого
вещества плутония. В своем докладе "К истории деления урана и последствиям
этого достижения", сделанном в 1958 году. Хан высказался следующим образом:
"В настоящее время у нас есть водородная бомба -- грозный призрак
взрывчатого превращения водорода в гелий. Однако на нашем Солнце идет совсем
другой процесс: саморегулирующийся синтез гелия из водорода, протекающий уже
миллиарды лет, которому мы обязаны тем, что наша Земля еще обитаема и не
охладилась до мертвой груды камней... Наши дети и внуки, должно быть,
овладеют этим процессом; они принесут Солнце на Землю -- если им разрешат до
этого дожить".
Солнце на Земле -- это не только научная проблема. В переносном смысле
это означает победу прогресса человечества. В настоящее время осуществление
управляемой термоядерной реакции -- первоочередное требование, которое
поставлено перед наукой и техникой. А как считали прежде?
В 1897 году Клеменс Винклер, старейшина химии, выразился по поводу этой
проблемы весьма своеобразно: "Мы, обитающие на Земле, приковываем свой
взгляд к сверкающим небесным светилам над нашими головами; мы следим за их
движением, даже рассчитываем его с поразительной точностью, однако наше
горячее желание проникнуть в суть их происхождения, в их сущность и
назначение остается неутоленным. По отношению к загадкам Космоса все мы
являемся вопрошающими детьми".
Для ученого это поразительно поэтические слова. Винклер считал, что
можно лишь гадать о том, что происходит на Солнце, наблюдая раз в году
солнечное затмение. Тогда "на несколько минут нам приоткрывается картина
грандиозного движения материи, химического и механического разрушения,
которое бушует на Солнце и не имеет себе равного на Земле".
Какая древняя космическая сила орудует здесь? Физики Аткинсон и
Хоутерман во время своего учения в Геттингене, то есть уже в 1927/28 годах,
развили знаменитую теорию возникновения солнечной энергии: жар Солнца и
свечение звезд вызваны атомной энергией: она выделяется в результате
превращения элементов, слияния ядер атомов самого легкого элемента --
водорода -- с образованием гелия. Фриц Хоутерман с удовольствием вспоминал
эти годы в Геттингене и любил рассказывать следующую историю: "Я гулял с
хорошенькой девушкой, а когда стемнело, появились яркие звезды, одна за
другой.-- Как прекрасно они сверкают!-- воскликнула моя спутница. А я ударил
себя кулаком в грудь и сказал: со вчерашнего дня я даже знаю, отчего они
сверкают..."
Несколько лет спустя Карл фон Вейцзекер и Ганс Бете интерпретировали
ядерные реакции на Солнце как круговой процесс. Начинаясь с углерода-12,
этот цикл протекает далее с выделением энергии через стадию образования
изотопов углерода, азота и кислорода и вновь возвращается к исходному
изотопу. По балансу четыре атома водорода соединяются в гелий. Разность их
атомных масс выделяется в форме энергии.
Упомянутые исследователи были не единственными и не первыми из тех, кто
занимался загадкой солнечной энергии, искал решений и находил правильные
ответы. Сегодня мы знаем, какие мощные усилия предпринимаются в
высокоразвитых промышленных странах, чтобы осуществить на Земле процессы,
протекающие на Солнце. По осторожным оценкам, термоядерные реакторы начнут
работать лишь в 2000-м году. Такая оценка мало понятна, ибо в специальной
литературе прошлых лет уже были сообщения о том, что проблема термоядерного
синтеза разрешена или разработаны пути ее разрешения. Быть может, здесь тот
же случай: давно известный процесс превращения водорода в гелий будет
покоиться в забвении прошлого и надо будет воскрешать его вновь,-- так же,
как в свое время тайный рецепт алхимиков для получения золота?
Выдающийся химик Эмиль Фишер, скончавшийся в 1919 году, вспоминал, что
еще в 1898/99 годах он вместе с физиком Фридрихом Кольраушем проводил опыты,
которые имели своей целью ни больше, ни меньше, как превращение элементов
друг в друга. Оба ученых уже тогда предполагали, что такого рода превращения
элементов осуществляются на Солнце. Они хотели подтвердить эту гипотезу
экспериментом. Фишер и Кольрауш воздействовали катодными лучами на водород
при пониженном давлении и надеялись с помощью спектрального анализа
обнаружить его превращение в благородный газ гелий. К сожалению, они не
достигли определенного результата.
Великий физик Резерфорд также не сомневался в том, что такое
превращение водорода в гелий может происходить; это можно увидеть из его
обращения к British Association[74] в сентябре 1923 года в
Ливерпуле. По словам Резерфорда, источником энергии Солнца и звезд является
синтез гелия из водорода. Обнаруживаемый при этом дефект массы должен
выделяться в виде энергии. Хотя Резерфорд был вполне уверен в реальности
такого превращения элементов, он мало верил в то, что подобный космический
процесс можно будет воспроизвести на Земле. Было бы "очень сложно, даже
невозможно получить гелий из водорода в лабораторных условиях".
Не прошло и трех лет, как эта проблема, казалось, была решена. Панету и
Петерсу из Химического института Берлинского университета удалось провести
такое превращение в лаборатории! В своих рассуждениях оба ученых исходили из
энергетического баланса следующей реакции:
4*1,008 г (Н) = 4,003 г (Не) + 0,029 г
Дефект массы в 0,029 г, который испытывает водород при превращении в
моль атомов гелия приводит к выделению энергии -- около 2,7*10[9]
кДж по формуле Эйнштейна. Таким образом, при синтезе 4 г (1 моль атомов)
гелия из водорода выделяется столько же энергии, сколько при сгорании более
80 т высококачественного каменного угля. Поэтому оба химика сделали вывод,
что вряд ли надо вообще подводить энергию для того, чтобы заставить идти эту
реакцию. Атомы Н должны превратиться в гелий просто с помощью катализатора,
например палладия. Образовавшийся гелий можно обнаружить спектральным путем
уже в количестве 10[-8] -- 10[-10] мл.
Оба исследователя приступили к работе. Опыт был так продуман, чтобы
гарантировать невозможность проникновения в вакуумную аппаратуру природного
гелия из воздуха. Панет и Петерс получили положительные результаты, то есть
обнаружили гелий. В августе 1926 года они сообщили, что найденный гелий
образовался в результате воздействия палладия на водород. Было ли это
разрешением вопроса, первым шагом к появлению искусственного Солнца на
Земле? Сообщения в прессе спешили указать на практическую сторону открытия:
неограниченная возможность получения редкого гелия могла явиться неожиданным
стимулом для воздухоплавания, ибо этот негорючий газ можно безопасно
использовать для заполнения воздушных шаров и аэростатов.
Однако, куда же девалась та огромная энергия, которая выделяется при
синтезе гелия? Берлинские исследователи, к своему великому сожалению, ее не
обнаружили: ни теплоты, ни радиоактивного излучения. Это было их слабым
местом. Профессор Панет и его сотрудники занимались этим вопросом в течение
двух лет. В начале 1927 года, уже через несколько месяцев после первой
публикации, они сообщили о некоторых сомнениях: асбест -- основа для
палладиевого катализатора -- содержит, как все минералы, следы гелия. Даже
стекло аппаратуры содержит гелий. В вакууме все эти следы благородного газа
должны диффундировать в реакционный сосуд. К сожалению, появление гелия в их
опытах следует объяснить попаданием естественной примеси. Позднее Панет с
сотрудниками обнаружили даже неон, который никак не должен был образоваться
при синтезе. В своей последней работе от сентября 1928 года разочарованные
ученые объявили, что результаты их многочисленных опытов являются неверными:
наличие неона доказывает, что в аппаратуру проникли следы воздуха.
26 марта 1951 года. Возбуждение в Буэнос-Айресе. Президент Хуан Перон
собрал всю мировую прессу, чтобы объявить, что Аргентина имеет намерение
стать атомной державой. Несколько недель тому назад в центре атомных
исследований страны была якобы в промышленном масштабе осуществлена
термоядерная реакция. Рядом с диктатором с самодовольной улыбкой на устах
находился австрийский физик Рональд Рихтер, отныне государственный подданный
Аргентины. Это был тот человек, который уже много лет по поручению Перона
работал над проблемой ядерного синтеза и теперь обнародовал эту блестящую
победу. В ответ на вопросы журналистов Рихтер гордо объявил: "Я умею
вырабатывать атомную энергию без урана". На глазах у собравшихся
пресс-атташе президент прикрепил ему на грудь высший знак отличия страны:
медаль Перониста.
Перон решился на некоторые сообщения. На острове Хемуль в глубине
страны Рихтер построил стенд для атомных испытаний. Эта область отгорожена и
недоступна для общественности. Капиталовложения в предприятие Перон оценил
свыше 100 миллионов долларов. Удача якобы оправдала столь большие затраты.
Сенсационное сообщение об удавшемся контролируемом термоядерном
синтезе, как молния, распространилось по всему миру. Расспрашивали Манфреда
фон Ардена, находившегося в ту пору в СССР, о личности этого Рональда
Рихтера. Было известно, что во время войны в институте Ардена в Берлине
работал физик с той же фамилией. Был ли это тот же Рихтер? Предположение
подтвердилось. Мнение Ардена о Рихтере как о научном работнике было не
слишком высоким: он охарактеризовал его как фантазера.
Вскоре выяснилось, что диктатор Перон попался на удочку шарлатана,
которому, хотя и удалось "атомизировать" 100 миллионов долларов, но было не
под силу получить атомную энергию путем термоядерного процесса.
Надувательство было обнаружено комитетом по расследованию, созданным
аргентинским парламентом. Вот еще один пример того, как "алхимик" смог
водить за нос своего повелителя. Рихтер, в течение многих лет обласканный
как авторитетный атомщик, осыпанный деньгами и почестями, обладатель многих
вилл и бронированной машины, подаренной президентом, впал в немилость.
Глава государства ненадолго пережил на своем посту бывшего фаворита. В
сентябре 1955 года участь Перона была решена произошедшим военным
переворотом. Предполагают, что одной из причин падения аргентинского
диктатора была афера его "придворного алхимика". Во всяком случае "алхимика"
милостью Перона можно заслуженно поставить в один ряд с его коллегами типа
Зейлера, Эмменса и Таузенда. Во все времена, вплоть до наших дней, они
дурачили свои жертвы. Их жизнь, полная приключений, могла бы служить сюжетом
для детективного романа. Мы привели лишь некоторые эпизоды из жизни этих
мошенников, полное же описание их судеб ждет своей книги. Когда же она будет
написана, эта книга -- "Путь алхимика"?
На пути к неисчерпаемой энергии
В начале 50-х годов мир был напуган взрывом водородной бомбы. Это были
первые неуправляемые термоядерные реакции, выпущенные на волю человеком.
Кое-кто считал, что это прогресс на пути к контролируемому ядерному синтезу;
теперь, мол, требуется лишь "обуздать" Н-бомбу. Какая ошибка! Ведь бомба
остается бомбой. Цель ни в коем случае не оправдывает средства. С тех пор
прошло уже более четверти века. Учитывая бурное развитие науки и техники,
можно сегодня с полным правом спросить себя: почему мы не продвинулись
вперед с созданием искусственного Солнца на Земле? Что нужно еще сделать,
чтобы разрешить, наконец, великую проблему трансмутации -- превращение
водорода и его изотопов в гелий?
Когда Рональд Рихтер в 1951 году пытался осуществить свой "ядерный
синтез", он рассчитывал произвести фурор. Но один известный ученый сказал
тогда, что господину Рихтеру надо было сделать возможными три невозможные
вещи: достичь температуры в несколько десятков миллионов градусов без
урановой бомбы, поддерживать эту температуру в течение нескольких секунд и,
наконец, создать такое давление, которое имеется в глубине звезд. Однако
никто не может достать звезду с неба, даже если он -- любимец диктатора!
Перечисленные условия являются необычайно жесткими, но они
действительно необходимы. Ядра атомов водорода или его изотопов должны
слиться, образуя гелий. Однако они отталкивают друг друга из-за своих
зарядов. Если же, несмотря на это, ядра атомов подойдут очень близко друг к
другу и в конце концов соединятся, то они должны находиться в состоянии
плазмы, когда имеются лишь "голые" ядра и свободные электроны. Такое особое
состояние материи появляется лишь при температурах в миллионы градусов. В
плазменном состоянии существует несколько возможностей превращения водорода
в гелий. Теория отдает предпочтение двум реакциям, которые исходят не из
обычного водорода, а из его изотопов -- дейтерия (D) и трития (Т):
D + Т = [4]He+ n + Энергия (1)
D + D = [3]He + n + Энергия (2), или
D + D = T + H + Энергия
Процесс (1) протекает в дейтериево-тритиевой плазме при температурах
свыше 40 миллионов градусов, в то время как реакция (2) для своего
поджигания требует температуры около 300 миллионов градусов. Следовательно,
все не так просто, как представляли себе в 20-х годах Панет и Петерс. Кроме
того, недостаточно получить 40 или 300 миллионов градусов, нужно, чтобы при
этих температурах плазма была удержана в стабильном состоянии какое-то
минимальное время -- около 1 с. Далее, для начала синтеза совершенно
необходимо определенное число частиц. Эти условия устанавливаются так
называемым критерием Лоусона: произведение времени удержания плазмы на
плотность частичек для реакции D с Т при рабочей температуре в 100 миллионов
градусов должно иметь значение 10[14] с/см[3]. Что это
означает? При температуре в 100 миллионов градусов 10[14]
реакционноспособных ядер атомов на кубический сантиметр должны быть удержаны
в течение, по крайней мере, одной секунды. Если это удастся, то термоядерный
реактор начнет работать.
При таких высоких требованиях экспериментальные трудности неизмеримо
возрастают. Само по себе проблемой является получение солнечных температур в
лабораторных условиях. Правда, в настоящее время можно достичь 100 миллионов
градусов, но лишь на доли секунды. Неразрешенными остаются прочие задачи:
стабильное удержание плазмы при высокой плотности частиц. При температурах в
несколько миллионов градусов частицы являются сверхбыстрыми. В доли секунды
плазма растекается и снова охлаждается. Ни один земной материал не может
существовать при этих температурах и удержать горячую плазму. В Солнечной
системе это удается лишь Солнцу в силу его большой массы и размеров:
гравитация удерживает солнечную плазму в космическом вакууме. Из-за проблемы
материала вопрос об удержании плазмы был заранее, казалось бы, обречен на
провал. К счастью, удалось найти изящное решение: плазму можно удержать
мощными магнитными полями.
Как обстоит дело с сырьем для будущих термоядерных реакторов? Этот
вопрос следует поставить с самого начала. Дейтерий в виде тяжелой воды
находится в Мировом океане практически в неограниченном количестве, правда
при "разбавлении" 1 : 6000. Если удастся провести D,D-синтез, то не будет
вообще никаких забот об исходном сырье, можно будет буквально "сжигать
море": 1 л обычной воды с ее естественным содержанием дейтерия дает столько
же энергии, сколько 300 л бензина. 1 г чистого дейтерия выделяет при синтезе
30 000 кВт энергии.
Несмотря на эти заманчивые цифры, полагают, что термоядерный
D,D-реактор будет иметь шанс на осуществление лишь в далеком будущем.
Непреодолимым препятствием является ныне температура плазмы в 300 миллионов
градусов. А вот эксперименты по термоядерному синтезу с дейтерием и тритием
могут быть проведены при более "доступных" температурах. Поэтому все усилия
концентрируются исключительно на последнем способе синтеза. Однако трития,
наиболее тяжелого изотопа водорода, в природе практически нет. Его можно
получить только искусственно в атомном реакторе, а в будущем, быть может, в
термоядерном реакторе. Исходным веществом является изотоп лития
[6]Li, который содержится в природном литии, к сожалению, только
в количестве 7,4 %. Он превращается в тритий при бомбардировке нейтронами:
[6]Li + n = T + [4]He
На практике в качестве горючего намереваются использовать дейтерид
лития (LiD), причем в термоядерном реакторе параллельно будут протекать
синтез трития и термоядерный синтез. Но хватит ли лития на Земле? Ответом
является условное "да". Природные запасы для атомных и термоядерных
реакторов -- уран, торий или литий -- встречаются приблизительно в
одинаковых количествах. В то же время тритий вызывает осложнения, поскольку
этот радиоактивный газ легко диффундирует и может проникнуть из реактора во
внешнюю среду. Кроме того, радиоактивность может возникать в самих
термоядерных реакторах: их металлические части, которые приходится время от
времени сменять, становятся радиоактивными за счет нейтронов, выделяющихся
при синтезе.
Первоначальное воодушевление в вопросе исследования термоядерного
синтеза, которое охватило ученых со времени Женевской конференции 1955 года,
вскоре сменилось некоторым спадом. Правда, через год И. В. Курчатов в
английском центре атомных исследований, в Харуэлле, доложил о новых
советских экспериментах с дейтериевой плазмой с температурой в миллион
градусов. Однако быстрых успехов не достигли ни в СССР, ни в Великобритании,
ни в США. Американцы в шутку назвали свою установку ядерного синтеза 1957
года perhapsotron. В вольном переводе это означает: "установка, работающая
по принципу: то ли будет, то ли нет".
На конференции по физике плазмы и контролируемому термоядерному синтезу
в сентябре 1961 года в Инсбруке один из ведущих специалистов, советский
физик Л. А. Арцимович, обратился ко всем участникам с сердечной речью. Наше
первоначальное предположение, сказал он, что двери в обетованную страну
сверхвысоких температур откроются при первом сильном напоре физиков,
оказалось столь же необоснованным, как надежда грешника попасть в рай, не
пройдя через чистилище. Однако едва ли можно сомневаться в том, что проблема
контролируемого термоядерного синтеза будет разрешена. Мы лишь не знаем,
сколько еще нам придется пребывать в чистилище.
"Пребывание в чистилище", по-видимому, закончилось в 1968 году. Н. Г.
Басов, один из изобретателей лазера, в руководимом им Физическом институте
АН СССР в Москве испытал новый вариант и обнаружил: лазерный луч,
сфокусированный на горючем из LiD, запускает реакции термоядерного синтеза.
Для этого вовсе не нужны столь высокие температуры. Достаточно сжать шарики
LiD ударными волнами, например мощными лазерными импульсами, направленными
со всех сторон на шарик ядерного горючего. Тогда за долю секунды, которой
достаточно для запуска процесса ядерного синтеза, плотность горючего
многократно возрастает по сравнению с исходной величиной.
В 1969 году французские ученые успешно испытали этот метод на
замороженном дейтерии. Когда они направили на дейтериевый лед узкий пучок
лучей лазера мощностью в 4 ГВт, они смогли обнаружить, что около 100 атомов
вступили в реакции синтеза за один "выстрел" лазера. Являлось ли это
успешным началом?
В 1972 году ученые США приподняли завесу молчания над аналогичными
экспериментами. Они заполняли дейтерием и тритием микробаллончики --
крошечные полые стеклянные шарики, которых на 1 кг нужно 2 миллиона штук,--
и с помощью лазерных импульсов вызывали в них реакции термоядерного синтеза.
Военные круги США думали сначала, что таким путем, с помощью одних только
лучей лазера, они смогут поджигать водородные бомбы -- без урановой бомбы.
Однако расчеты показали, что для этого потребовались бы лазеры в тысячи или
десятки тысяч раз более мощные, чем те, которыми располагали. Уже нынешние
мощные лазерные установки занимают большую площадь, каких же размеров должны
быть лазеры для Н-бомб, столь привлекающие футурологов?
Пример тунгусского метеорита показывает, что поджиг термоядерной бомбы
может произойти и "совершенно естественным путем". 30 июня 1908 года в
сибирской тайге, в районе Подкаменной Тунгуски, произошла "катастрофа века".
Слепящий огненный шар со свистом опустился на Землю и взорвался со страшной
силой. Даже на расстоянии 300 км из окон повылетали стекла. В Иркутске,
Ташкенте, Потсдаме и в ряде других мест зарегистрированы были сейсмические
волны, которые несколько раз обошли земной шар. В течение недели в Европе
стояли "белые ночи", явившиеся следствием взрыва. В Петербурге и Лондоне
прохожие могли ночью на улице читать газету. Что произошло? Наткнулся ли на
Землю большой метеорит? Когда, годы спустя, проникли к месту взрыва,
оказалось, что лес в окружности 40 км уничтожен, а вокруг -- следы больших
разрушений. Поразительно, что до сего времени так и не нашли ни малейших
остатков метеорита!
С тех пор в ходу было много объяснений, часто фантастических: это был
гигантский снежный шар из Космоса, разрушенный космический корабль,
гигантская стая мошек или же обломок антиматерии из другой Галактики,
который полностью превратился в излучение при столкновении с "нашей"
материей. Некоторые поговаривали об атомном взрыве.
В Аризоне спилили 300-летнюю сосну Дугласа и исследовали ее годичные
кольца на содержание радиоактивного углерода, который образуется при ядерном
взрыве и распространяется по всему миру. Действительно, в кольце,
соответствующем 1909 году, обнаружили повышенное содержание углерода-14.
Специалисты рассчитали -- взрывная сила должна была составить 40 Мт, что
соответствует большой Н-бомбе. Идея о термоядерном взрыве долгое время
будоражила умы, пока не возник вопрос -- кто же, собственно, мог сбросить
"бомбу", к тому же еще в 1908 году! Внеземная цивилизация?
К возможным объяснениям добавим еще одно: да, это был термоядерный
взрыв. Огромный снежный шар из Космоса при столкновении с земной атмосферой
разогрелся настолько, что был достигнут критерий Лоусона. Ядра водорода и
дейтерия сначала мирно слились с образованием трития, гелия, лития. При
дальнейшем повышении плотности смеси из-за продолжающегося сжатия синтез
вдруг приобрел характер взрыва. Космическая водородная "бомба" взорвалась --
совершенно естественным путем.
Вернемся все же к исходному вопросу. Термоядерный синтез с помощью
лазеров таит в себе много проблем. Профессор Н. Г. Басов, однако, смотрит на
это оптимистически -- с тех пор, как в его институте в Москве функционирует
установка лазерного синтеза "Дельфин". В ней советские ученые собираются с
помощью лазерных молний довести твердый водород до такой плотности, что он
за доли секунды станет в пять раз более плотным, чем тяжелейший из природных
элементов -- уран. Несмотря на несомненные экспериментальные успехи, еще
далеко до создания электростанции на основе лазерного синтеза. Если бы
принцип оправдал себя, все равно для термоядерного реактора, вырабатывающего
энергию, потребовались бы "баллончики" другого размера: диаметром в
несколько сантиметров, вместо 0,1 мм. Чтобы поджечь такие шары горючего
недостаточно мощности нынешних лазеров. Это удивительно: ведь современные
лазеры, выделяющие энергию в 4--5 кДж в виде молний за миллионные доли
секунд, дают в итоге столько же энергии, сколько 200--250 крупных
электростанций в 1 000 МВт каждая. В то же время для экономично работающих
термоядерных реакторов потребовались бы лазеры приблизительно в 1 000 кДж, а
экспериментально до сих пор было достигнуто максимально 10,2 кДж. Мы
подчеркиваем, "экономично", ибо пока во всех, даже положительных,
экспериментах неизмеримо больше энергии затрачивается, чем получается.
Значит, надо продолжать творческий поиск более мощных лазерных установок.
Помимо ядерного синтеза, индуцируемого лазером, перспективным является
также исходный вариант -- нагрев D, Т-плазмы, удерживаемой магнитным полем.
Советская установка типа "Токамак" в настоящее время испытана во всех
странах, использующих процесс термоядерного синтеза, и признана успешным
вариантом. В июне 1975 года в Институте атомной энергии им. И. В. Курчатова
в Москве начала работать установка "Токамак 10". Для создания ее
колоссального магнитного поля требуются мощности в 130 МВт. Другой агрегат,
"Токамак 7", благодаря магнитным катушкам из сверхпроводников требует для
обеспечения магнитного поля лишь около тысячной доли этой мощности. "Токамак
10" и его американский вариант Tokamak PLT (Princeton Large
Torus[75])*, видимо, последние образцы экспериментальных
термоядерных установок. При "генеральной репетиции" с "Токамаком 10" в
феврале 1976 года советские специалисты достигли устойчивой реакции ядерного
синтеза с дейтерием. Температура плазмы во время процесса составила семь
миллионов градусов, что дало значение критерия 1012 с/м3.
Между тем в более поздних опытах на "Токамаке 10" было достигнуто 13
миллионов градусов. При этом за полсекунды, потребовавшейся для начала
реакции, установка израсходовала столько электроэнергии, сколько ее
вырабатывает электростанция мощностью в 200 МВт за то же время. Мощность
"Токамаков" во всем мире год за годом подходит все ближе к той интересной
области на диаграмме Лоусона, которая обещает осуществить "Солнце на Земле".
В августе 1978 года в мировой прессе появились сообщения, что ученые из
университета в Принстоне (США) достигли большого успеха: за долю секунды в
Tokamak PLT удалось достичь температур Солнца -- 60 миллионов градусов.
Безусловно, это значительный шаг к решению проблемы. В области исследования
мирного термоядерного синтеза американские ученые плодотворно сотрудничают с
советскими исследователями. Докладывая об успешном эксперименте, научные
работники США подчеркивали, что принцип работы плазменного реактора
"Токамак" -- разработка советских ученых.
Как пойдет дело дальше? В СССР сейчас конструируют "Токамак 20". Он
будет опытным реактором, вырабатывающим термоядерную энергию.
Солнце и звезды служат нам "сияющим примером" реальности
контролируемого ядерного синтеза. Поэтому наука стремится соорудить эти
неиссякаемые источники энергии на Земле. Решающий вклад для разрешения
мировой энергетической проблемы мы видим сегодня в овладении контролируемой
термоядерной реакцией.
"Искусство изготовления золота" путем превращения элементов
практикуется в настоящее время больше, чем когда-либо, и во многих
вариантах. Конечно, "золото" приходится заменить другими понятиями,
например, словом "синтетические элементы". Во многих отношениях они стали
для нас драгоценнее, чем презренный металл,
Превращение элементов, осуществленное с целью синтеза новых химических
элементов, привело к высвобождению энергии атома и указало несколько
доступных путей для ее получения. Удавшееся превращение элементов принесло
человечеству обширные познания. Теперь надо добиться того, чтобы эти знания
были использованы на пользу человечества и для прогресса общества.
Обратно в раздел история
|
|